Метод гиллеспи примеры. Предсказание геометрической формы молекул

Простым и удобным методом предсказания геометрии молекул является модель отталкивания локализованных электронных пар или метод Гиллеспи, имеющий в своей основе метод ВС. Исходными данными для указанного метода являются число связанных с центральным атомом других атомов, валентные возможности всех связанных атомов, количество электронов на внешнем слое центрального атома. Основные положения метода Гиллеспи сводятся к следующему.

1. Каждая электронная пара, как образующая связь, так и неподеленная, занимает определённое место в пространстве (локализованная электронная пара). Облако двойной и тройной связи рассматривается как единое. Разумеется, электронные пары (электронные облака) отталкиваются.

2. В зависимости от числа локализованных электронных пар (электронных облаков) они располагаются в пространстве следующим образом:

2 – линейная конфигурация,

3 – правильный треугольник,

4 – тетраэдр,

5 – правильная тригональная бипирамида,

Процедура работы по методу Гиллеспи примерно следующая. Обозначим центральный атом буквой А, любой связанный с ним другой атом – буквой В, неподелённую электронную пару – буквой Е. Пусть общее число партнёров центрального атома по химической связи – n, а число неподелённых электронных пар у него – m. Тогда рассматриваемая молекула в своеобразном свёрнутом виде относительно центрального атома запишется AB n E m . Разумеется, в качестве центрального атома выбирается самый многовалентный атом. Сложные, громоздкие молекулы в рамках метода Гиллеспи рассматриваются по частям. В результате суммирования n и m по предложенному выше методу определяется исходная модель геометрии молекулы или иона, а затем после своеобразного отбрасывания неподелённых электронных пар – собственно геометрия частицы.

Возможные дополнения к методу Гиллеспи:

а) облако двойной связи занимает в пространстве бóльшее место, чем облако однократной связи;

б) облако тройной связи занимает в пространстве бóльшее место, чем облако двойной связи и тем более, чем облако однократной связи;

в) в случае полярной ковалентной связи электронное облако сконцентрировано в большей степени возле более электроотрицательного атома;

г) облако неподелённой электронной пары занимает в пространстве бóльшее место, чем облако однократной связи.

Эти дополнения позволяют производить уточнения к геометрии молекул, отклонения от валентных углов, предсказываемых основной процедурой.

Продемонстрируем возможности метода Гиллеспи на примере нескольких молекул. Начнём с разобранных выше молекул воды и аммиака.



Н 2 О; АВ 2 Е 2 ; ; исходная модель – тетраэдр; молекула – уголковая, угол Н–О–Н 109 о 28".

NH 3 ; АВ 3 Е 1 ; ; исходная модель – тетраэдр; молекула – тригональная пирамида, угол Н–N–Н 109 о 28". Обратим внимание, что тетраэдр, являющийся правильной тригональной пирамидой, более старшая фигура (центральный атом и четыре партнёра по химической связи), чем собственно тригональная пирамида (центральный атом и три партнёра по химической связи).

Еще несколько примеров.

SnCl 2 ; АВ 2 Е 1 ; ; исходная модель – правильный треугольник; молекула – уголковая, угол Cl–Sn–Cl равен 120 о или меньше в силу того, что свободная электронная пара занимает бóльшее место в пространстве, чем связывающая пара.

СО 2 ; АВ 2 Е 0 ; ; линейная молекула.

Анионы кислот проще всего рассматривать также, как и молекулы самих кислот: H 2 SO 4 и SO 4 2– AB 4 E 0 ; H 3 PO 4 и PO 4 3– AB 4 E 0 ; H 2 СO 3 и СO 3 2– AB 3 E 0 и т.д.

В ряде случаев возможны несколько моделей строения частиц в рамках метода Гиллеспи, выбирается энергетически более выгодная. Например, XeF 2 ; AB 2 E 3 ; исходная модель – тригональная пирамида, возможны варианты:

Первый вариант энергетически более выгоден: электронные пары максимально разведены, максимально удалены и атомы фтора, имеющие одинаковые эффективные заряды. Вывод: молекула XeF 2 – прямолинейна.

Представления о направленности связи и теория гибридизации электронных орбиталей позволяют объяснить геометрическую форму молекул веществ с ковалентными связями, но не могут предсказать ее. Теоретический расчет геометрической конфигурации частицы квантово-механическими методами представляет собой очень сложную и не всегда имеющую однозначное решение задачу. Однако существует довольно простой прием, позволяющий с достаточно высокой надежностью качественно оценить геометрию молекул. Этот прием был разработан Р. Гиллеспи и получил название: метод отталкивания электронных пар валентной оболочки. Метод связывает форму частицы с силами отталкивания, действующими между электронными парами, сформированными при образовании соответствующей молекулы. Метод Гиллеспи особо результативен для молекул, образованных s- и р-элементами.

Концепция отталкивания электронных пар валентной оболочки может быть сведена к следующим основным положениям:

1. Геометрическая форма молекулы определяется числом электронных пар валентной оболочки (ЭПВО), в которые не включают электронные пары, образующие p-связи.

2. Электронные пары валентной оболочки ориентируются так, чтобы отталкивание между ними было минимально.

3. Неподеленные электронные пары занимают больший объем околоядерного пространства, чем связывающие. Следствием неэквивалентности неподеленных и связывающих электронных пар является искажение валентных углов.

Чтобы определить число ЭПВО необходимо сложить число валентных электронов данного атома с числом электронов, предоставленных присоединенными атомами, а затем из полученной суммы вычесть число электронов, образующих p-связи, и разделить полученный результат на два. Так, для молекулы СО 2 , имеющей две s- и две p-связи, каждый атом кислорода предоставляет по два электрона на образование связей с атомом углерода, а атом углерода предоставляет по два электрона на образование связей с каждым атомом кислорода. Соответственно число ЭПВО для атома углерода равно 2:

Число связывающих ЭПВО равно числу s-связей, образуемых центральным атомом (N s); разность равна числу неподеленных электронных пар: N нп = N ЭПВО - N s .

Идеальные геометрические формы, отвечающие различным значениям числа ЭПВО и неподеленных электронных пар, приведены в табл. 6, в скобках указан атом, для которого определяется тип гибридизации.

Если валентная оболочка атома в молекуле включает две электронные пары, два одноименных точечных заряда, оказавшись на поверхности сферы, расположатся на концах диаметра большого круга. Соответственно две ЭПВО должны занять орбитали, обеспечивающие валентный угол 180°, что согласно методу валентных связей отвечает sp-гибридизации атомных орбиталей. Максимальному удалению и минимальному отталкиванию трех ЭПВО будет отвечать ориентация орбиталей от центра к вершинам равностороннего треугольника (sp 2 -гибридизация). Четырем ЭПВО соответствует тетраэдрическая конфигурация (sp 3 -гибридизация). В случае пяти ЭПВО наиболее выгодным является распределение электронных пар по направлениям к вершинам тригональной бипирамиды (sp 3 d-гибридизация), шести ЭПВО соответствует октаэдрическая конфигурация (sp 3 d 2 -гибридизация).



При наличии неподеленных электронных пар геометрия молекулы изменяется в зависимости от их числа. Как видно из табл. 6, в случае трех ЭПВО молекулы могут быть угловыми (N нп = 1) и линейными (N нп =2). Наличие в валентной оболочке четырех электронных пар допускает образование тригонально-пирамидальных при N нп = 1, угловых при N нп = 2 и линейных (N нп = 3) молекул.

Если число ЭПВО равно пяти и все пары являются связывающими, молекула имеет форму тригональной бипирамиды. При наличии неподеленных электронных пар необходимо знать, какие орбитали, аксиальные или экваториальные, будут заняты ими. Расчет показывает, что более выгодным является экваториальное положение. Действительно, занимающие экваториальное положение неподеленные пары имеют только двух ближайших соседей под углом 90 °, тогда как при аксиальном положении таких соседей было бы три, что привело бы к более сильному отталкиванию. В результате молекула с одной неподеленной парой имеет форму бисфеноида (искаженный тетраэдр), с двумя - Т-форму, а трем неподеленным парам соответствуют линейные молекулы.

Таблица 6.

Геометрия молекул s- и p-элементов



N ЭПВО Тип гибридизации Число неподеленных пар
sp линейная BeF 2 (Be) линейная AlF (Al)
sp 2 треугольник BF 3 (B) угловая SnCl 2 (Sn) линейная NH (N)
sp 3 тетраэдр CF 4 (C) тригональная пирамида NH 3 (N) угловая Н 2 О (О) линейная IF (I)
sp 3 d тригональная бипирамида PF 5 (P) бисфеноид SF 4 (S) T-форма IF 3 (I) Линейная XeF 2 (Xe)
sp 3 d 2 октаэдр SF 6 (S) тетрагональная пирамида BrI 5 (Br) квадрат XeF 4 (Xe) Т-форма - (Xe)

В случае шести ЭПВО неподеленные пары занимают в октаэдре транс-положение друг относительно друга. В силу этого для шести ЭПВО реализуются следующие формы молекул: октаэдр (N нп = 0), тетрагональная пирамида (N нп = 1), квадрат (N нп = 2) и т.д..

Чтобы определить геометрическую форму молекулы по методу Гиллеспи, необходимо знать электронные конфигурации атомов, порядок соединения этих атомов в молекуле, число s- и p-связей в образовавшейся частице и учесть эффекты, приводящие к искажению валентных углов.. Рассмотрим несколько примеров.

Пример 1 . Для молекулы COCl 2 , в которой атом кислорода образует с углеродом двойную связь, а атомы хлора – одинарные (рис. 20а), числа ЭПВО и неподеленных пар составляют:

N ЭПВО (C) = ; N нп (С) = 3 - 3 = 0

Поэтому молекула COCl 2 должна иметь форму равностороннего треугольника с валентными углами, равными 120°. В действительности же эта молекула имеет форму равнобедренного треугольника (d C = O = 117 пм, d C - Cl = 175 пм, Ð ClCO = 124 °, Ð С lCCl = 111 °). Поскольку кратные связи занимают больший объем у центрального атома, что приводит к сжатию валентных углов.

Пример 2 . Для молекулы CHCl 3 число ЭПВО и связывающих пар одинаково (N ЭПВО = 4, N нп = 0), однако молекула хлороформа не имеет форму правильного тетраэдра (d C - Cl =176 пм, d C - H = 110 пм, ÐClCCl = 111,3 °, ÐHCCl = 107,5°). Это связано с неравноценностью присоединенных атомов: атом водорода и атомы хлора имеют различные радиусы и образуют различные по длине связи с атомом углерода.

Пример 3 . Определим форму молекулы оксофторида ксенона XeO 2 F 2 , в которой центральным является атом ксенона, образующий четыре s- и две p-связи (рис. 20б).

Числа ЭПВО и неподеленных пар валентной оболочки хсенона составляют:

N ЭПВО (Xe) = ; N нп (Xe) = 5 - 4 = 1

В соответствии с табл. 10 образующаяся молекула имеет форму бисфеноида, в котором атомы кислорода образуют связи за счет экваториальных орбиталей, обеспечивающих этим атомам максимальное удаление от орбитали, занятой неподеленной парой, а атомы фтора, имеющие по три неподеленные пары, находятся в транс-положении. Можно ожидать, что длина двойных связей Xe=O будет меньше длины одинарных связей Xe-F, а углы OXeO и FXeF в связи с наличием неподеленной пары на экваториальной орбитали будут меньше 120 ° и 180 ° соответственно. Эти предположения хорошо согласуются с результатами экспериментального определения формы рассматриваемой частицы: молекула XeO 2 F 2 действительно имеет форму слегка искаженного бисфеноида (d Xe = O = 171 пм, d Xe - F = 190 пм, ÐOXeO = 105,7 °, ÐFXeF = 174,7°).

Пример 4 . Определим геометрию газообразного метабората натрия (рис. 20в).

При определении геометрии сложных молекул, содержащих цепочки из четырех и более атомов, рационально разбить молекулу на фрагменты и определить геометрию каждого из них отдельно. Для метабората натрия следует порознь определить форму фрагментов O=B-O и B-O-Na. Для атома бора:

N ЭПВО (В) = N нп (В) = 2 - 2 = 0;

т.е. фрагмент O=B-O имеет линейную форму.

N ЭПВО (О) = N нп (O) = 4 - 2 = 2

Таким образом, фрагмент B-O-Na имеет угловую форму, валентный угол близок к 109,5 °. Молекула NaBO 2 действительно представляет собой сочетание линейного и углового фрагментов с валентными углами 180 ° и 109 ° (рис. 20в).

Рис. 20. Структурные формулы молекул СOCl 2 (а), XeOF 2 (б), NaBO 2 (в).

Пример 5. Определим геометрию иона IO 2 F 2 - .

Если частица является ионом, то при расчете числа ЭПВО следует вычесть заряд иона из числа валентных электронов. Для атома иода, являющегося центральным и образующего четыре s- и две p-связи:

N ЭПВО (I) = N нп (I) = 5 - 4 = 1

Рассматриваемый ион должен иметь форму бисфеноида, что подтверждено экспериментально.

Простым и удобным методом предсказания геометрии молекул является модель отталкивания локализованных электронных пар или метод Р. Д. Гиллеспи, имеющий в своей основе метод ВС. Исходными данными для этого метода являются: число связанных с центральным атомом других атомов; валентные возможности всех связанных атомов; количество электронов на внешнем слое центрального атома.

Основные положения метода Гиллеспи сводятся к следующему.

Каждая электронная пара, как образующая связь, так и неподеленная, занимает определенное место в пространстве (локализованная электронная пара). Электронные пары за счет отталкивания располагаются таким образом, чтобы быть максимально удаленными друг от друга, причем неподеленные электронные пары занимают больший объем, чем поделенные. Двойные и тройные связи рассматриваются как одинарные, хотя и занимают больший объем.

Процедура работы по методу Гиллеспи примерно следующая. Обозначим атом структуры как А, любой связанный с ним другой атом - буквой В и т.д.; неподеленную электронную пару - Е, общее число партнеров центрального атома по химической связи - п, а число неподеленных электронных пар - т. Тогда рассматриваемая в простейшем случае молекула относительно центрального атома будет иметь вид AB w E ;// . Обычно в качестве центрального атома выбирается самый многовалентный атом. Сложные, громоздкие молекулы в рамках метода Гиллеспи рассматриваются по частям. В результате суммирования п и т по предложенному выше методу определяется исходная модель геометрии молекулы или иона, а затем и собственно геометрия частицы.

Пространственная конфигурация молекул в зависимости от числа электронных пар приведена в табл. 3.1.

Таблица 3.1

Конфигурация молекул но методу Гиллеспи

Окончание табл. 3.1

Число электронных пар

Расположение

электронных

молекулы

Геометрия

молекулы

Тетраэдриче-

Тетраэдр

Тригональная

пирамида

ав 2 е 2

Тригонально-

Тригональная

бипирамидаль-

бипирамида

ав 4 е,

Дисфеноид

Т-образиая

Линейная

Октаэдриче-

Квадратная

пирамида

Пентагонально-

ав 7

Пентагональная

бипирами-

бипирамида

ав 6 е,

Одношапоч-

ный октаэдр

Продемонстрируем возможности метода Гиллеспи на примере нескольких молекул.

Аммиак (NH 3): центральный атом - азот, т = (5 - 3*1)/2 = = 1; отсюда тип молекулы - AB 3 E t , исходная модель - тетраэдр, молекула - тригональная пирамида, угол между связями Н - N - Н меньше тетраэдрического (109°28") из-за неподеленной пары электронов, занимающей больший объем, и составляет около 107,3°.

Вода (Н 2 0): центральный атом - кислород, т = (6 - -2 - 1) / 2 = 2; отсюда следует тип молекулы - АВ 9 Е 9 , исходная модель которой - тетраэдр, молекула - угловая, валентный угол между химическими связями Н - О - Н еще меньше из-за наличия двух неподеленных пар электронов на атоме кислорода и равен 104,5°.

Хлорид олова (SnCl 9): центральный атом - олово, т = = (4-2 -1) / 2 = 1; тин молекулы - АВ 2 Е Г исходная модель - правильный треугольник, молекула - угловая, валентный угол между химическими связями Cl - Sn - Cl равен 120°.

Оксид углерода(1У) (С0 9): центральный атом - углерод, т = (4 - 2 2) / 2 = 0; тип молекулы - АВ 2 , молекула - линейная, угол между связями О = С = О равен 180°.

Следует отметить, что метод Гиллеспи имеет существенные ограничения. Его основные недостатки:

  • неприменимость к большинству соединений d- и 5-элементов;
  • неприменимость к соединениям со значительной ион- ностью химической связи. Так, молекула Li 2 0 линейна, но, как относящаяся к типу АВ 2 Е 2 , должна быть угловой;
  • невозможность предсказания «инертности» (отсутствия направленности, стереоактивности) неподеленной электронной пары. Так, ионы Pblg^SbBr^" иТеВг 6 2_ относятся к типу AB 6 Ej, но в действительности оказываются правильными октаэдрическими структурами. Такое распределение электронной пары характерно для ионов и молекул комплексных соединений, образованных катионом комплек- сообразователя с большим радиусом и лигандами с относительно невысокой электроотрицательностыо.

ГИЛЛЕСПИ ТЕОРИЯ

система постулатов и правил для объяснения и предсказания геом. конфигурации молекул на основе принципа Паули и модели отталкивания электронных пар валентных орбиталей. Согласно Г. т., пространственная направленность хим. связей поливалентного атома в молекуле зависит прежде всего от общего числа электронов в его валентной оболочке. Электронные облака связывающих атомы электронных пар и электронов на несвязывающих орбиталях (т. е. неподеленных пар валентной оболочки атомов) грубо представляются в виде жестких сфер соотв. меньшего и большего диаметров. Атомный остов, включающий ядро и внутр. электронные оболочки, также считается сферическим (с нек-рыми исключениями). Сферич. облака электронных пар окружают остов так, что их взаимное отталкивание минимально, т. е. они максимально удалены друг от друга. Такая модель позволяет оценивать в молекулах. Идеальные конфигурации и значения валентных углов для молекул с числом псфер одинакового диаметра приведены в таблице.

ТИПЫ КОНФИГУРАЦИЙ МОЛЕКУЛ

При разл. диаметрах сфер (связывающих и неподеленных пар электронов) образуются искаженные конфигурации с валентными углами, отличающимися от их идеальных значений. Напр., в молекулах СН 4 , NH 3 и Н 2 О в валентных оболочках атомов С, N и О находятся четыре электронные пары, но для СН 4 они все связывающие, а у атомов азота и кислорода имеются соотв. одна и две неподеленные электронные пары. Поэтому идеальную тетраэдрич. конфигурацию имеет лишь СН 4 ; в молекулах NH 3 и Н 2 О валентные углы меньше тетраэдрического. Оценка радиусов электронных сфер и атомных остовов с использованием значений ковалентных и ионных радиусов атомов, а также постулатов Г. т., касающихся кратных, полярных связей и др., позволяет судить и о длинах связей в молекулах. Г. т. дает результаты качеств. или полуколичеств. характера и применяется гл. обр. в химии неорг. и координац. соединений. Теория полезна также при рассмотрении фрагментов цепных, слоистых и объемных кристаллич. структур.

Осн. положения теории сформулировали Р. Найхолм и Р. Гиллеспи в 1957.

Лит.: Гиллеспи Р., Геометрия молекул, пер. с англ., М., 1975; Минкин В. И., Симкин Б. Я., Миняев Р. М., Теория строения молекул, М., 1979. Ю. А. Пентин.

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "ГИЛЛЕСПИ ТЕОРИЯ" в других словарях:

    Валентных орбиталей (ОЭПВО) один из подходов в химии, необходимый для объяснения и предсказания геометрии молекул. Согласно этой теории молекула всегда будет принимать форму, при которой отталкивание внешних электронных пар минимально… … Википедия

    В Википедии есть статьи о других людях с такой фамилией, см. Гиллеспи. Гиллеспи, Роналд Джеймс англ. Ronald James Gillespie Дата рождения: 21 августа 1924(1924 08 21) (88 лет) … Википедия

    Рис.1. Электронная теория химической связи была предложена и развита американским физикохимиком Льюисом Г.Н в 1912 1916 гг … Википедия

    - (комплексные соед.), содержат катионный, анионный или нейтральный комплекс, состоящий из центр. атома (или иона) и связанных с ним молекул или ионов лигандов. Центр. атом (комплексообразователь) обычно акцептор, а лиганды доноры электронов, и при … Химическая энциклопедия

    У этого термина существуют и другие значения, см. Гибридизация. Модель молекулы метана, образованной sp3 гибридными орбиталями … Википедия

Исходя из электростатических представлений Гиллеспи предложил более общую теорию пространственного строения молекул. Основные положения:

  • 1. Геометрия молекулы или иона определяется только числом электронных пар на валентном уровне центрального атома.
  • 2. Электронные пары занимают такое расположение на валентной оболочке атома, когда они максимально удалены друг от друга, т. е. электронные пары ведут себя так, как если бы они взаимно отталкивались.
  • 3. Область пространства, которую занимает несвязывающая (неподеленная) пара электронов имеет большие размеры, чем та область, которая занята связывающей электронной парой.
  • 4. Размер области пространства, занятой связывающей парой электронов, уменьшается с увеличением электроотрицательности лиганда и с уменьшением электроотрицательности центрального атома.
  • 5. Две электронные пары двойной связи занимают большую область пространства, чем одна электронная пара простой связи.

Обозначения, которые используются для описания геометрической конфигурации молекул: А -многовалентный атом; X - атомы, связанные с атомом А;

n - число атомов X; E - неподеленная пара электронов; m - количество неподеленных электронных пар.

Тогда формула молекулы по Гиллеспи записывается так: AX n E m .

Геометрия молекулы зависит от суммы (n + m). Число n, которое определяет количество атомов X, непосредственно присоединенных к атому A, совпадает с его координационным числом. Каждая электронная пара принимается за точечный заряд. Центральный атом А помещается в центр сферы некоторого радиуса, который для однотипных присоединенных атомов X равен длине связи A-X. На поверхности сферы располагаются точечные электронные пары.

Применяя правило максимального удаления электронных пар на сфере друг от друга, можно вывести геометрию простейших молекул и ионов, постепенно увеличивая сумму поделенных и неподеленных пар (рис.4 и табл.1). валентный гибридизация полярность ковалентный

Молекулу AX рассматривать не имеет смысла, так как она всегда будет линейной, независимо от количества неподеленных электронных пар у атома А.

Молекула AX 2 также всегда линейна, так как максимальное отталкивание двух электронных пар будет располагать их на концах диаметра условной сферы.

Три связывающие электронные пары, максимально удаленные друг от друга, образуют правильный треугольник (молекула AX 3). В этом случае угол X-A-X равен 120 о. Такое строение имеют молекулы BF 3 , AlF 3 . Если одну из связывающих электронных пар заменить неподеленной парой электронов, тогда молекула будет описываться формулой AX 2 E и иметь угловое строение, причем, согласно третьему правилу Гиллеспи, угол X-A-X станет меньше 120 о. Примером такой геометрии может служить молекула SnF 2 .

Рис. 4.

Четыре связывающие пары электронов будут образовывать в пространстве тетраэдр. По теории Гиллеспи это тип молекулы AX 4 . Угол X-A-X составит 109 о 28?. Типичными представителями этого типа молекул являются молекулы CH 4 , CCl 4 , SnF 4 . Последовательно уменьшая число связывающих пар электронов и увеличивая число неподеленных электронных пар, для молекул типа AX 3 E получим тригонально-пирамидальное строение (молекула аммиака NH 3), а для молекул типа AX 2 E 2 - угловое (молекула воды H 2 O).

Координационное число "пять" реализуется в молекулах типа AX 5 . Примерами подобных молекул являются пентафторид или пентахлорид фосфора (PF 5 , PCl 5). Пять атомов галогенов в пространстве занимают вершины тригональной бипирамиды. Три атома располагаются в экваториальной плоскости, образуя равнобедренный треугольник, а два - соответственно над и под этой плоскостью. Расстояние A-X от центра молекулы до одной из вершин пирамиды, называемое аксиальным, больше аналогичного экваториального.

Валентный угол между связями, лежащими в экваториальной плоскости, равен 120 о, а валентный угол между связями, лежащими в аксиальной плоскости - 180 о. У молекул, являющихся производными от тригональной бипирамиды, для неподеленных электронных пар возникают две альтернативные возможности расположения. При аксиальном расположении она испытывает отталкивание от трех близлежащих атомов, а в экваториальной - от двух. Поэтому первые неподеленные пары электронов всегда занимают экваториальное положение как энергетически наиболее выгодное. Примером может служить молекула тетрафторида серы SF 4 , которая имеет форму качелей или дисфеноида. В молекулах типа AX 3 E 2 , таких, как ClF 3 или ICl 3 , вторая неподеленная электронная пара располагается также в экваториальной плоскости. Поэтому все четыре атома находятся в одной плоскости, напоминая по форме букву Т. За счет того, что неподеленная пара электронов занимает в пространстве область большего размера, происходит искажение соответствующих валентных углов в сторону их уменьшения. Третья неподеленная пара электронов, также занимая положение в экваториальной плоскости, превращает Т-образную молекулу в линейную. Представителем молекул типа AX 2 E 3 является молекула дифторида ксенона XeF 2 .

Наиболее выгодное размещение шести атомов X вокруг центрального атома A - октаэдрическое. Молекулы типа AX 6 , например, SF 6 , имеют форму октаэдра. Первая неподеленная пара электронов будет занимать любую из вершин октаэдра, превращая его в квадратную пирамиду. Примером молекулы типа AX 5 E может служить IF 5 . Для второй неподеленной электронной пары имеются две возможности расположения: по соседству с первой (цис-положение) и напротив нее (транс-положение). Максимальное отталкивание электронных пар заставляет занять транс-положение. Вследствие этого молекулы типа AX 4 E 2 имеют форму квадрата, например, XeF 4 .

Таблица 1.

Число электронных пар

Координация

Тип Молекулы

Форма молекулы

Линейная

Линейная

Тетраэдр

Тетраэдр

Тригональная бипирамида

Тригональная бипирамида

Тригональная бипирамида

Дисфеноид

Т-образная

Линейная

Квадратная бипирамида

Плоский квадрат

Новые статьи

© 2024 minbanktelebank.ru
Бизнес. Заработок. Кредит. Криптовалюта