Как называется свойство материалов сопротивляться разрушению. Основные механические свойства металлов

Любое вещество, будь то газ, жидкость или твердое тело, обладает рядом специфических, только ему присущих свойств. Однако эти свойства позволяют не только индивидуализировать элементы, но и объединять их в группы по принципу схожести.

Посмотрите на металлы: с обывательской точки зрения это блестящие элементы, с высокой электро- и теплопроводностью, не восприимчивые к внешним физическим воздействиям, ковкие и легко свариваемые при высоких температурах. Достаточен ли этот перечень. чтобы объединить металлы в одну группу? Конечно же нет, металлы и их производные (сплавы) гораздо сложнее и обладают целым набором химических, физических, механических и технологических свойств. Сегодня мы поговорим лишь об одной группе: механических свойствах металлов.

Основные механические свойства металлов

Что это за свойства? Под механическими понимают такие свойства субстанции, которые отражают ее умение противостоять действиям извне. Известно девять основных механических свойств металлов:

Прочность - означает, что приложение статической, динамической или знакопеременной нагрузки не приводит к нарушению внешней и внутренней целостности материала, изменению его строения, формы и размеров.

Твердость (часто путают с прочностью) - характеризует возможность одного материала противостоять прониканию другого, более твердого предмета.

Упругость - означает способность к деформированию без нарушения целостности под действием определенных сил и возвращению первоначальной формы после освобождения от нагрузки.

Пластичность (часто путают с упругостью и наоборот) - также способность к деформации без нарушения целостности, однако в отличие от упругости, пластичность означает, что объект способен сохранить полученную форму.

Стойкость к трещинам - под воздействием внешних сил (ударов, натяжений и пр.) материал не образует трещин и сохраняет наружную целостность.

Вязкость или ударная вязкость - антоним ломкости, то есть возможность сохранять целостность материала при возрастающих физических воздействиях.

Износостойкость - способность к сохранению внутренней и внешней целостности при длительном трении.

Жаростойкость - длительная возможность противостоять изменению формы, размера и разрушению при воздействии больших температур.

Усталость - время и количество циклических воздействий, которые материал может выдержать без нарушения целостности.

Часто, говоряо тех или иных свойствах, мы путаем их названия: технологические свойства относим к физическим, физические к механическим и наоборот. И это неудивительно, ведь несмотря на глубинные отличия, лежащие в основе той или иной группы свойств, механические свойства не только крайне тесно связаны с другими характеристиками металлов, но и напрямую зависят от них.

Наиболее взаимозависимы между собой механические и химические свойства металлов, ведь именно химический состав металла или сплава, его внутреннее строение (особенности кристаллической решетки) диктуют все остальные его параметры. Если говорить о механических и физических свойствах металлов, то их чаще других путают между собой, что обусловлено близостью данных определений.

Физические свойства часто неотделимы от механических. К примеру, тугоплавкие металлы еще и самые прочные. Главное же отличие лежит в природе свойств. Физические свойства - те что проявляется в покое, механические - только под воздействием извне. Не хуже других связаны механические и технологические свойства металлов. Например, механическое свойство металла "прочность" может быть результатом его грамотной технологической обработки (с этой целью нередко используют "закалку" и "старение"). Обратная взаимосвязь не менее важна, к примеру, ковкость проявление хорошей ударной вязкости.

Делая вывод, можно сказать, что зная некоторые химические, физические или технологические свойства можно предугадать, как будет вести себя металл под воздействием нагрузки (т.е. механически), и наоборот.

В чем отличия механических свойств металлов и сплавов?

Различаются ли механические свойства металлов и сплавов? Безусловно. Ведь любой металлический сплав изначально создается с целью получения каких-либо конкретных свойств. Некоторые сочетания легирующих элементов и основного металла в сплаве способны мгновенно преобразить легируемый элемент. Так алюминий (не самый прочный и твердый металл в мире) в сочетании с цинком и магнием образует сплав по прочности сравнимый со сталью. Все это дает практически неограниченные возможности в получении веществ наиболее близких к требуемым.

Отдельное внимание следует уделить механическим свойствам наплавленных металлов. Наплавленным считается металл, с помощью которого производилась сварка двух или более частей какого-то металлического элемента или конструкции. Этот металл словно нитки соединяет разорванные части. От того, как будет вести себя "шов" под нагрузкой, будет зависеть безопасность и надежность всей конструкции. Исходя из этого, крайне важно, чтобы свойства наплавленного металла были не хуже, чем у главного металла.

Как определить механические свойства?

Экспериментальным путем. Среди основных методов определения механических свойств металлов можно выделить:

Испытания на растяжение;

Метод вдавливания по Бринеллю;

Определение твердости металла по Роквеллу;

Оценка твердости по Виккерсу;

Определение вязкости с помощью маятникового копра;

Механические свойства имеют весьма серьезное значение. Их знание позволяет использовать металлы и их сплавы с наибольшей эффективностью и отдачей.

Механические свойства характеризуют способность материала сопротивляться деформации и разрушению под действием приложенных нагрузок.

По характеру изменения во времени действующей нагрузки механические испытания делятся на статические (на растяжение, сжатие, изгиб, кручение); динамические (на ударный изгиб) и циклические (на усталость).

По воздействию температуры на процесс их делят на испытания при комнатной температуры, низкотемпературные и высокотемпературные (на длительную прочность, ползучесть).

Статические испытания проводятся при воздействии на образец с определенной скоростью постоянно действующей нагрузки. Скорость деформации составляет 10 -4 –10 -1 с -1 . Статические испытания на растяжение относятся к наиболее распространенным. Свойства, определяемые при этих испытаниях, приведены в многочисленных стандартах по техническим условиям на материалы. К статическим испытаниям относятся: растяжение, сжатие, изгиб, кручение.

Динамические испытания характеризуются приложением к образцу ударной нагрузки и значительной скоростью деформации. Длительность испытания не превышает сотен долей секунды. Скорость деформации составляет около 10 2 с -1 . Динамические испытания чаще всего проводят по схеме ударного изгиба образцов с надрезом.

Циклические испытания характеризуются многократными изменениями нагрузки по величине и по направлению. Примером испытаний являются испытания на усталость , они длительны и по их результату определяют число циклов до разрушения при разных значениях напряжения. В конечном итоге находят предельные напряжения, которые образец выдерживает без разрушения в течение определенного числа циклов нагружения.

Простейшим механическим свойством является твердость. Способы определения твердости делятся, в зависимости от скорости приложения нагрузки, на статические и динамические а по способу ее приложения – на методы вдавливания и царапания. Методы определения твердости по Бринеллю, Роквеллу, Виккерсу относятся к статическим методам испытания.

Твердость это способность материала сопротивляться вдавливанию в него более твердого тела (индентора) под действием внешних сил.

При испытании на твердость в поверхность материалов вдавливают пирамиду, конус или шарик (индентор), в связи с чем различают методы испытаний, соответственно, по Виккерсу, Роквеллу и Бринеллю. Кроме того, существуют менее распространенные методы испытания твердости: метод упругого отскока (по Шору), метод сравнительной твердости (Польди) и некоторые другие.

При испытании материалов на твердость не изготавливают стандартных специальных образцов, однако к размерам, поверхности образцов и изделий предъявляются определенные требования.

Твердость по Виккерсу (ГОСТ 2999-75) определяют путем вдавливания в металл индентора алмазной пирамиды с углом при вершине 136° под действием постоянной нагрузки (Р): 1; 2; 2,5; 3; 5; 10; 20; 30; 50 или 100 кгс и выдержки под нагрузкой 10–15 с. Для определения твердости черных металлов и сплавов используют нагрузки от 5 до 100 кгс, медных сплавов – от 2,5 до 50 кгс, алюминиевых сплавов – от 1 до 100 кгс. После снятия нагрузки определяют длину диагонали отпечатка с помощью микроскопа прибора, а твердость HV рассчитывают по формуле

где Р – нагрузка, кгс; d – диагональ отпечатка, мм.

В стандарте на испытание имеется таблица зависимости твердости от величины нагрузки и длины диагонали. Поэтому на практике расчетов не производят, а пользуются готовой расчетной таблицей. Твердость по Виккерсу HV измеряется в кгс/мм2, Н/мм2 или в МПа. Значение твердости по Виккерсу может изменяться от HV 2060 до HV 5 при нагрузке 1 кгс.

По методу Бринелля вдавливают в образец или изделие стальной закаленный шарик диаметром 10, 5 или 2,5 мм под действием нагрузок 3 000, 1 000, 750, 500, 250, 62,5 кгс и других (ГОСТ 9012-59). Схема определения твердости по Бринеллю показана на рис. 1.20. Полученный круглый отпечаток на образце измеряют лупой и по таблицам находят величину твердости по Бринеллю, значение которой не превышает 450 НВ. Твердость по Бринеллю почти совпадает со значениями твердости по Виккерсу.

Твердость НВ – это также величина напряжений сопротивления вдавливанию, т.е. физическая величина:

где Р – нагрузка, кгс; D – диаметр шарика, мм; t – глубина сегмента отпечатка; d – диаметр отпечатка, мм.

Рис. 1.20. Схема определения твердости по Бринеллю.

Твердость по Бринеллю НВ (по умолчанию) имеет размерность кгс/мм 2 , например, твердость алюминиевого сплава равна 70 НВ. При нагрузке, определяемой в ньютонах, твердость по Бринеллю измеряется в МПа.

Например, твердость отожженной стали равна 207 НВ при нагрузке 3 000 кгс, диаметре шарика 10 мм, диаметре отпечатка 4,2 мм или, учитывая коэффициент перевода: 1 ньютон = 9,8 кгс, НВ = 2028 МПа.

По методу Роквелла (ГОСТ 9013-59) вдавливают алмазный конус с углом при вершине 120о (шкалы А и С) или стальной шарик диаметром 1,5875 мм (шкала В). При этом определяют твердость, соответственно, HRA, HRC и HRB. В настоящее время измерение твердости по методу Роквелла является наиболее распространенным методом, потому что при использовании твердомеров Роквелла не требуется измерять отпечаток, число твердости считывается со шкалы прибора сразу после снятия основной нагрузки.

Метод заключается во вдавливании в испытуемый образец индентора под действием двух последовательно прикладываемых нагрузок – предварительной Р 0 и основной P 1 , которая добавляется к предварительной, так что общая нагрузка Р = Р0 + Р1. После выдержки в течение нескольких секунд основную нагрузку снимают и измеряют остаточную глубину проникновения индентора, который при этом продолжает находиться под действием предварительной нагрузки. Перемещение основной стрелки индикатора на одно деление шкалы соответствует перемещению индентора на 0,002 мм, которое принимается за единицу твердости.

На рис. 1.21 представлена схема измерения твердости по методу Роквелла алмазным или твердосплавным конусом. При испытаниях измеряют глубину восстановленного отпечатка. Шкалы А и С между собой совпадают, поскольку испытания проводят одним и тем же индентором – алмазным конусом, но при разных нагрузках: 60 и 150 кгс соответственно. Твердость в этом случае определяется как

Рис. 1.21. Схема определения твердости по Роквеллу (индентор – конус).

На практике значения твердости по Роквеллу не рассчитываются по формулам, а считываются с соответствующей (черной или красной) шкалы прибора. Шкалы HRC и HRA используются для высокой твердости, HRB – для низкой. Число твердости по Роквеллу измеряют в условных единицах, оно является мерой глубины вдавливания индентора под определенной нагрузкой.

Механические свойства металлов при растяжении . Испытание на растяжение материалов проводят в соответствии с ГОСТ 1497-84 «Методы испытаний на растяжение». Стандарт устанавливает методы статических испытаний на растяжение черных и цветных металлов для определения при температуре 20 °С пределов пропорциональности, упругости, текучести, временного сопротивления разрыву, относительного удлинения и относительного сужения, модуля упругости.

Для испытаний применяют плоские и цилиндрические образцы, вырезанные из детали или специально изготовленные. Размеры образцов регламентированы указанным стандартом, они подчиняются геометрическому подобию и могут быть короткими и длинными. Для цилиндрического образца берется соотношение начальной рабочей длины l 0 и исходного диаметра d0: l 0 = 5d 0 – короткий образец, l 0 = 10d 0 – длинный образец. Для плоского образца берется соотношение рабочей длины l 0 и площади поперечного сечения F 0: l 0 = 5,65 F 0 – короткий образец, l 0 = 11,3 F 0 – длинный образец. Цилиндрические образцы изготавливаются диаметром 3 мм и более. Образцы состоят из рабочей части длиной l 0 , и головок, форма и размер которых соответствует захватам машины (рис. 1.22).

Рис. 1.22. Цилиндрические и плоские образцы до и после испытания на растяжение.

Рис. 1.23. Первичная диаграмма растяжения.

Растяжение образца проводят на специальных машинах, фиксирующих величину прилагаемой нагрузки и изменение длины образца при растяжении.

Эти же машины позволяют записывать изменение длины образца при увеличении нагрузки (рис. 1.23), т.е. первичную диаграмму испытания на растяжение в координатах: нагрузка (Р), в Н, кН и абсолютное удлинение образца Δl в мм.

Измеряя величину нагрузки в характерных точках диаграммы испытаний на растяжение (рис. 1.23), определяют следующие характеристики механических свойств материалов:

σ пц – предел пропорциональности, точка р ;

σ 0,05 – предел упругости, точка е ;

σ т – предел текучести физический, точка s;

σ 0,2 – предел текучести условный;

σ в – временное сопротивление разрыву или предел прочности, точка b.

Значения 0,05 и 0,2 в записи предела упругости и текучести соответствуют величине остаточной деформации Δl в процентах от l 0 при растяжении образца. Напряжения при испытании на растяжение определяют путем деления нагрузки Р, соответствующей характерной точке на диаграмме, на площадь первоначального поперечного сечения F 0 рабочей части испытуемого образца:

Площадь поперечного сечение F 0 определяется следующим образом:

для цилиндрического образца

для плоского образца F 0 = a 0 × b 0 , где a 0 – первоначальная толщина, а b 0 – первоначальная ширина образца. В точке k определяют напряжение сопротивления разрушению материала.

Предел пропорциональности и предел упругости определяют с помощью тензометра (прибор для определения величины деформации). Предел текучести физический и условный рассчитывают, определяя нагрузку по диаграмме растяжения. Если на диаграмме нет площадки текучести, то для вычисления условного предела текучести необходимо провести графические построения на диаграмме (рис. 1.24). Вначале находят величину остаточной деформации, равную 0,2 % от l 0 , далее отмечают отрезок на оси деформации, равный 0,2 % от l 0, и проводят линию, параллельную пропорциональному участку диаграммы растяжения до пересечения с кривой растяжения. Нагрузка Р 0,2 соответствует точке их пересечения. Физический или условный предел текучести характеризует способность материала к началу пластической деформации, т.е. сопротивление малой пластической деформации.

Рис. 1.24. Определение предела текучести.

Предел прочности можно подсчитать, используя показание силоизмерителя, по максимальной нагрузке P max при разрыве; либо найти P max (P в) по первичной диаграмме растяжения. Характер деформации при растяжении вязких и хрупких материалов существенно различается.

Хрупкие материалы после достижения максимальной нагрузки быстро разрушаются без значительной пластической деформации, поэтому σ в для хрупких материалов является характеристикой сопротивления разрушению, а для пластичных – характеристикой сопротивления деформации.

Напряжение разрушения определяют как истинное. При этом нагрузку разрушения делят на конечную площадь поперечного сечения образца после разрушения (F к):

Все рассчитанные таким образом величины являются характеристиками прочности материала.

Пластичность, т.е. способность деформироваться без разрушения, характеризуется изменениями размеров образца. При испытании на разрыв определяют характеристики пластичности: относительное удлинение

и относительное сужение

где l к и F к – соответственно, длина рабочей части и площадь поперечного сечения образца после разрыва.

Рассчитанные характеристики механических свойств после испытания а растяжение заносят в протокол.

Механические свойства металлов при сжатии . Для хрупких материалов с низким сопротивлением разрыву проводят испытание на сжатие по ГОСТ 25.503-97. Для испытания используют цилиндрические образцы с гладкими торцами и торцовыми выточками.

При сжатии находят следующие характеристики сопротивления деформации: предел пропорциональности
, предел упругости
, физический предел текучести
, условный предел текучести
, предел прочности
. Напряжения рассчитываются как отношение соответствующей нагрузки к площади сечения образца до деформации. Предел прочности можно рассчитать без записи диаграммы сжатия, для остальных расчетов необходима первичная диаграмма испытания.

Диаграмма сжатия пластичных образцов отличается от диаграммы хрупких образцов. Высокопластичные материалы не удается разрушить при сжатии, и они сплющиваются. Поэтому временное сопротивление сжатию пластичных образцов можно определить лишь условно, т.к. после участка упрочнения происходит быстрое нарастание сплющивания образца. Хрупкие материалы разрушаются при незначительных деформациях и предел прочности находят по отношению максимальной нагрузки к первоначальной площади сечения образца. У хрупких материалов, например чугуна, сопротивление сжатию выше, чем сопротивление растяжению. Многие хрупкие материалы при сжатии разрушаются вследствие среза или скалывания по плоскостям под углом 45° к оси образца.

К характеристике пластичности при сжатии относят ε – относительное укорочение образца:
где h 0 , h k – начальная и конечная высота образца.

Испытания на изгиб . Испытание на изгиб проводят по ГОСТ 14019-80 по двум схемам: сосредоточенной нагрузкой, приложенной в середине пролета, и при чистом изгибе (рис. 1.25).

Рис. 1.25. Схема изгиба сосредоточенной силой (а ) и двумя симметричными нагрузками (б ).

В результате испытания находят предел пропорциональности, предел упругости, предел текучести с точным замером величины деформации. Предел прочности при изгибе рассчитывают σ изг:
где М изг – наибольший изгибающий момент, равный при первой схеме нагружения М изг = Рl /4, а по второй схеме – М изг =Ра; W – момент сопротивления, характеристика поперечного сечения бруса, для образцов круглого сечения W = πd 3 /32; для образцов прямоугольного сечения W = bh 2 /6, где h – высота бруса.

Пластичность характеризует f разр (величина прогиба), деформация, которая зависит от материала, длины образца, момента инерции и т.д.

Динамические испытания . Испытания на ударный изгиб . Важной характеристикой механических свойств является ударная вязкость, характеризующая удельную работу, затрачиваемую на разрушение при ударе образца с надрезом. Ударная вязкость определяется при испытании на маятниковом копре с постоянным запасом работы маятника по ГОСТ 9454-78 «Метод испытания на ударный изгиб при пониженной, комнатной и повышенной температурах». Стандарт распространяется на черные и цветные металлы и сплавы и устанавливает метод испытания от –100 до +1 000 °С. Метод основан на разрушении ударом маятникового копра образца с концентратором напряжений. В результате испытания определяют полную работу, затраченную при ударе К или ударную вязкость КС.

Используют образцы прямоугольной формы с концентратором типа U, V, T (усталостная трещина). Наиболее распространенными образцами являются образцы размерами 55×10×10 мм с U концентратом 2×2 мм (рис. 1.26).

Рис. 1.26. Стандартный образец с U-образным надрезом для испытаний на ударный изгиб.

На разрушение ударом образца затрачивается только часть энергии маятника, в связи с чем маятник после разрушения образца продолжает двигаться, отклоняясь на определенный угол. Чем больше величина работы, затрачиваемой на разрушение образца, тем на меньший угол он отклоняется от вертикали после разрушения. Величиной этого угла и определяют работу удара К или работу, затраченную на разрушение образца. Работу разрушения K относят к площади поперечного сечения образца S0 в месте излома, и тем самым определяют KC ударную вязкость: КС = К/S 0 , где К измеряется в Дж (кгс·м), S 0 в м 2 (см 2).

В зависимости от вида концентратора ударная вязкость обозначается KCU, KCV, KCT и имеет размерность МДж/м 2 (МДж/см 2) или кгс·м/см 2 .

Контрольные вопросы и задания

1. Какие типы кристаллических решеток характерны для чистых металлов?

2. Изобразите решетки кристаллов ОЦК, ГЦК, ГПУ, укажите их координационное число и плотность упаковки.

3. Какие типы связей характерны для металлов Al, Cu, Fe; полуметаллов Bi, Si и неметаллических материалов?

4. Опишите типичные признаки металлического состояния.

5. Какие дефекты кристаллического строения присутствуют в реальных кристаллах?

6. Опишите строение пластмасс и других неметаллических материалов.

7. Охарактеризуйте основные методы исследования материалов.

8. В чем заключается макроанализ материалов?

9. Что можно определить при исследовании микроструктуры?

10. Как приготовить объекты исследования для макро- и микроанализа?

11. Опишите преимущества электронной микроскопии при исследовании материалов.

11. Какие задачи можно решать, применяя рентгеновские методы анализа для изучения материалов?

12. Какие требования предъявляют к выбору материала при изготовлении изделий?

13. Опишите химические свойства материалов.

14. Какие виды коррозии возможны в материалах при их эксплуатации в агрессивных средах?

15. Опишите физические и теплофизические свойства материалов.

16. Охарактеризуйте механические свойства материалов.

17. Как определяют твердость по Бринеллю, Роквеллу и Виккерсу?

18. Запишите единицы измерения твердости по Бринеллю, Роквеллу и Виккерсу.

19. Какие методы испытаний механических свойств относят к статическим, динамическим и циклическим?

20. Изобразите первичную диаграмму растяжения для пластичного материала.

21. Как по диаграмме растяжения определить предел прочности и предел текучести?

22. Какие типы образцов используют для нахождения относительного удлинения и относительного сужения?

23. Какие характеристики определяют при испытании на сжатие и на изгиб?

24. Какие характеристики вычисляют при испытании на ударный изгиб?

25. Чем различается ударная вязкость, обозначаемая КСU , КСV, КСТ?

Механические свойства характеризуются способностью материала сопротивляться всем видам внешних воздействий с приложением силы. По совокупности признаков различают прочность материала при сжатии, изгибе, ударе, кручении и т. д., твердость, пластичность, упругость, истираемость.

Прочность - свойство материала сопротивляться разрушению под действием напряжений, возникающих от нагрузки. Изучением этого свойства материалов занимается специальная наука - сопротивление материалов. Ниже излагаются общие понятия о прочности материалов, необходимые для изучения основных свойств строительных материалов.

Материалы, находясь в сооружении, могут испытывать различные нагрузки. Наиболее характерными для строительных конструкций являются сжатие, растяжение, изгиб и удар. Каменные материалы (гранит, бетон) хорошо сопротивляются сжатию и намного хуже (в 5...50 раз) - растяжению, изгибу, удару, поэтому каменные материалы используют главным образом в конструкциях, работающих на сжатие. Такие материалы, как металл и древесина, хорошо работают на сжатие, изгиб и растяжение, поэтому их используют в конструкциях, испытывающих эти нагрузки.

Прочность строительных материалов характеризуется пределом прочности.

Пределом прочности (Па) называют напряжение, соответствующее нагрузке, вызывающей разрушение образца материала. Предел прочности при сжатии различных материалов 0,5... 1000 МПа и более. Прочность на сжатие определяют испытанием образцов на механических или гидравлических прессах. Для этой цели применяют специально изготовленные образцы, формы куба со стороной 2...30 см. Из более однородных материалов образцы делают меньших размеров, а из менее однородных - больших размеров. Иногда на сжатие испытывают образцы, имеющие форму цилиндров или призм. При испытании на растяжение металлов применяют образцы в виде круглых стержней или полос; при испытании на растяжение вяжущих веществ используют образцы в виде восьмерок.

Для определения предела прочности образцы изготовляют в соответствии с указаниями ГОСТов. Размеры и форму образцов строго выдерживают, так как они существенно влияют на результат испытания. Так, призмы и цилиндры меньше сопротивляются сжатию, чем кубы того же поперечного сечения; наоборот, низкие призмы (высота меньше стороны) больше сопротивляются сжатию, чем кубы. Это объясняется тем, что при сжатии образца плиты пресса плотно прижимаются к опорным плоскостям его и возникающие силы трения удерживают от расширения прилегающие поверхности образца, а боковые центральные части образца испытывают поперечное расширение, которое удерживается только силами сцепления между частицами. Поэтому чем дальше находится сечение образца от плит пресса, тем легче происходит разрушение в этом сечении и образца в целом. По этой же причине при испытании хрупких материалов (камня, бетона, кирпича и т. п.) образуется характерная форма разрушения - образец превращается в две усеченные пирамиды, сложенные вершинами.

На прочность материала оказывают влияние не только форма и размер образца, но и характер его поверхности и скорость приложения нагрузки. Поэтому для получения сравнимых результатов нужно придерживаться стандартных методов испытания, установленных для данного материала. Прочность зависит также от структуры материала, его плотности (пористости), влажности, направления приложения нагрузки. На изгиб испытывают образцы в виде балочек, расположенных на двух опорах и нагруженных одним или двумя сосредоточенными грузами, увеличиваемыми до тех пор, пока балочки не разрушатся.

В материалах конструкций допускаются напряжения, составляющие только часть предела прочности, таким образом, создается запас прочности. При установлении величины запаса прочности учитывают неоднородность материала - чем менее однороден материал, тем выше должен быть запас прочности.

При установлении коэффициента запаса прочности важными являются агрессивность эксплуатационной среды и характер приложения нагрузки. Агрессивная среда и знакопеременные нагрузки, вызывающие усталость материала, требуют более высокого коэффициента запаса прочности. Запас прочности, обеспечивающий сохранность и долговечность конструкций зданий и сооружений, устанавливают нормами проектирования и определяют видом и качеством материала, условиями работы и классом здания по долговечности, а также специальными технико-экономическими расчетами.

За последние годы в практику строительства внедряются новые методы контроля прочности, позволяющие испытывать без разрушения образцы или отдельные элементы конструкций. Этими методами можно испытывать изделия и конструкции при их изготовлении на заводах и строительных объектах, а также после установки их в зданиях и сооружениях.

Известны акустические методы, из которых наибольшее распространение получили импульсный и резонансный. Указанным методам присуще общее основное положение, а именно: физические свойства материала или изделия оцениваются по косвенным показателям - скорости распространения ультразвука или времени распространения волны удара, а также частотой собственных колебаний материала и характеристикой их затухания.

Твердость - способность материала сопротивляться проникновению в него другого более твердого тела. Твердость не всегда соответствует прочности материала. Для определения твердости существует несколько методов.

Твердость каменных материалов оценивают по шкале Мооса, состоящей из десяти минералов, расположенных по степени возрастания их твердости. Показатель твердости испытуемого материала находится между показателями твердости двух соседних минералов, из которых один чертит, а другой чертится этим материалом. Твердость металлов и пластмасс определяют вдавливанием стального шарика. От твердости материалов зависит их истираемость. Это свойство материала важно при обработке, а также при использовании его для полов, дорожных покрытий.

Истираемость материала характеризуется потерей первоначальной массы, отнесенной к 1 м 2 площади истирания. Сопротивление истиранию определяют для материалов, предназначенных для полов, дорожных покрытий, лестничных ступеней и др.

Износом называют разрушение материала при совместном действии истирания и удара. Прочность при износе оценивается потерей в массе, выраженной в процентах. Износу подвергают материалы для дорожных покрытий и балласта железных дорог.

Сопротивление удару имеет большое значение для материалов, применяемых в полах и дорожных покрытиях. Предел прочности материала при ударе (Дж/м 3) характеризуется количеством работы, затраченной на разрушение образца, отнесенной к единице объема материала. Испытание материалов на удар производят на специальном приборе - копре.

Деформация - изменение размеров и формы материалов под нагрузкой. Если после снятия нагрузки образец материала восстанавливает свои размеры и форму, то деформацию называют упругой, если же он частично или полностью сохраняет изменение формы после снятия нагрузки, то такую деформацию называют пластической.

Упругость - свойство материала восстанавливать после снятия нагрузки свою первоначальную форму и размеры. Пределом упругости считают напряжение, при котором остаточные деформации впервые достигают некоторой очень малой величины (устанавливаемой техническими условиями на данный материал).

Пластичность - свойство материала изменять свою форму под нагрузкой без появления трещин (без нарушения сплошности) и сохранять эту форму после снятия нагрузки. Все материалы делятся на пластичные и хрупкие. К пластичным материалам относят сталь, медь, глиняное тесто, нагретый битум и т. п. Хрупкие материалы разрушаются внезапно без значительной деформации. К ним относят каменные материалы. Хрупкие материалы хорошо сопротивляются только сжатию и плохо - растяжению, изгибу, удару.

f = f - f ноом [ Гц ]

f = ± 0,1 Гц - допускаемое значение

f = ± 0,2 Гц - предельно допускаемое значение

f = ± 0,4 Гц - аварийно допускаемое значение

Изменение нагрузки потребителей в сети может быть различным. При малом изменении нагрузки требуется небольшой резерв мощности. В этих случаях автоматическое регулирование частоты одной так называемой частотно-регулируемой станцией.

При больших изменениях нагрузки, автоматическое регулирование частоты должно быть предусмотрено на значительном числе станций. Для этого составляются графики изменения нагрузок электростанций.

При отключении мощных линий электропередач в послеаварийных режимах, система может оказаться разделенной на отдельно не синхронно работающие части.

На электростанциях, на которых мощности может оказаться не достаточно, произойдет снижение производительности оборудования собственных нужд (питательных и циркуляционных насосов), следовательно вызовет значительное снижение мощности станции, вплоть до выхода ее из строя.

В подобных случаях для предотвращения аварий предусматриваются устройства АЧР, отключающие в таких случаях часть менее ответственных потребителей, а после включения резервных источников питания, устройства ЧАПВ включают отключенных потребителей.

Механические свойства характеризуют способность материала сопротивляться деформации (упругой и пластической) и разрушению. Для металлов и сплавов, работающих как конструкционные материалы, эти свойства являются определяющими. Выявляют их испытаниями при воздействии внешних нагрузок.

Количественные характеристики механических свойств: упругость, пластичность, прочность, твердость, вязкость, усталость, трещиностойкость, хладостойкость, жаропрочность. Эти характеристики необходимы для выбора материалов и режимов их технологической обработки, расчетов на прочность деталей и конструкций, контроля и диагностики их прочностного состояния в процессе эксплуатации.

Под действием внешней нагрузки в твердом теле возникают напряжение и деформация.

отнесенная к первоначальной площади поперечного сечения F 0 образца:

Деформация - это изменение формы и размеров твердого тела под действием внешних сил или в результате физических процессов, возникающих в теле при фазовых превращениях, усадке и т.п. Деформация может быть упругая (исходные размеры образца восстанавливаются после снятия нагрузки) и пластическая (сохраняется после снятия нагрузки).

Напряжение s измеряют в паскалях (Па), деформацию e - в процентах (%) относительного удлинения (Dl /l )×100 или сужения площади сечения (DS /S )×100.


При все возрастающей нагрузке упругая деформация, как правило, переходит в пластическую, и далее образец разрушается (рис.1). В зависимости от способа приложения нагрузки методы испытания механических свойств металлов, сплавов и других материалов делятся на статические, динамические и знакопеременные.

Прочность - способность металлов оказывать сопротивление деформации или разрушению статическим, динамическим или знакопеременным нагрузкам. Прочность металлов при статических нагрузках испытывают на растяжение, сжатие, изгиб и кручение. Испытание на разрыв является обязательным. Прочность при динамических нагрузках оценивают удельной ударной вязкостью, а при знакопеременных нагрузках - усталостной прочностью.

Прочность при испытании на растяжение оценивают следующими характеристиками (рис.1).

Предел прочности на разрыв (предел прочности или временное сопротивление разрыву) s в - это напряжение, отвечающее наибольшей нагрузке Р max , предшествующей разрушению образца:

Эта характеристика является обязательной для металлов.

Предел пропорциональности s пц - это условное напряжение Р пц , при котором начинается отклонение от пропорциональной зависимости между деформацией и нагрузкой:

Предел текучести s т - это наименьшее напряжение Р т , при котором образец деформируется (течет) без заметного увеличения нагрузки:

Условный предел текучести s 0,2 - напряжение, после снятия которого остаточная деформация достигает величины 0,2 %.

Если же на кривой напряжение - деформация за пределом упругости образуется площадка текучести (рис.1), то за предел текучести s т принимают напряжение, отвечающее площадке текучести.

Если после того, как напряжение превысило s т, его снять, то деформация уменьшится по пунктирной линии. Отрезок ОО ¢ показывает остаточную пластическую деформацию.

Величина s т чрезвычайно чувствительна к скорости деформации (продолжительности действия нагрузки) и к температуре. Если прикладывать к материалу напряжение меньше s т в течение длительного времени, то оно может вызвать пластическую (остаточную) деформацию. Это медленное и непрерывное пластическое деформирование воздействием постоянной нагрузки называют ползучестью (криппом ).

Пластичность - свойство металлов деформироваться без разрушения под действием внешних сил и сохранять измененную форму после снятия этих сил. Пластичность - одно из важных механических свойств металла, которое в сочетании с высокой прочностью делает его основным конструкционным материалом. Ее характеристиками являются относительное удлинение перед разрывом d и относительное сужение перед разрывом y. Эти характеристики определяют при испытании металлов на растяжение, а их численные значения вычисляют по формулам (в процентах):

где l 0 и l р - длина образца до и после разрушения соответственно;

F 0 и F р - площадь поперечного сечения образца до и после разрушения.

Упругость - свойство металлов восстанавливать свою прежнюю форму после снятия внешних сил, вызывающих деформацию. Упругость - свойство, обратное пластичности.

Твердость - способность металлов оказывать сопротивление проникновению в них более твердого тела. Испытания на твердость - самый доступный и распространенный вид механических испытаний. Наибольшее применение в технике получили статические методы испытания на твердость при вдавливании индентора: метод Бринелля , метод Виккерса и метод Роквелла . Твердость, согласно этим методам, определяют следующим образом.

По Бринеллю - в испытуемый образец с определенной силой вдавливается закаленный стальной шарик диаметром D под действием нагрузки P , и после снятия нагрузки измеряется диаметр отпечатка d (рис.2,а ). Число твердости по Бринеллю - НВ, характеризуется отношением нагрузки P, действующей на шарик, к площади поверхности сферического отпечатка M :

Чем меньше диаметр отпечатка d , тем больше твердость образца. Диаметр шарика D и нагрузку P выбирают в зависимости от материала и толщины образца. Метод Бринелля не рекомендуется применять для материалов с твердостью более 450 HB, так как стальной шарик может заметно деформироваться, что внесет погрешность в результаты испытаний.

Виккерса в поверхность материала вдавливается алмазная четырехгранная пирамида с углом при вершине a = 136° (рис.2,б ). После снятия нагрузки вдавливания измеряется диагональ отпечатка d 1 . Число твердости по Виккерсу HV подсчитывается как отношение нагрузки Р к площади поверхности пирамидального отпечатка М:

Число твердости по Виккерсу обозначается символом HV с указанием нагрузки Р и времени выдержки под нагрузкой, причем размерность числа твердости (кгс/мм 2) не ставится. Продолжительность выдержки индентора под нагрузкой принимают для сталей 10-15 с, а для цветных металлов - 30 с. Например, 450 HV 10/15 означает, что число твердости по Виккерсу 450 получено при Р = 10 кгс (98,1 Н), приложенной к алмазной пирамиде в течение 15 с.

Преимущество метода Виккерса по сравнению с методом Бринелля заключается в том, что методом Виккерса можно испытывать материалы более высокой твердости из-за применения алмазной пирамиды.

При испытании на твердость по методу Роквелла в поверхность материала вдавливается алмазный конус с углом при вершине 120° или стальной шарик диаметром 1,588 мм. Однако, согласно этому методу, за условную меру твердости принимается глубина отпечатка. Схема испытания по методу Роквелла показана на рис.2,в. Вначале прикладывается предварительная нагрузка Р 0 ,под действием которой индентор вдавливается на глубину h 0 . Затем прикладывается основная нагрузка Р 1 , под действием которой индентор вдавливается на глубину h 1 . После этого снимают нагрузку Р 1 ,но оставляют предварительную нагрузку Р 0 .

При этом под действием упругой деформации индентор поднимается вверх, но не достигает уровня h 0 . Разность (h - h 0) зависит от твердости материала; чем тверже материал, тем меньше эта разность. Глубина отпечатка измеряется индикатором часового типа с ценой деления 0,002 мм. При испытании мягких металлов методом Роквелла в качестве индентора применяется стальной шарик. Последовательность операций такая же, как и при испытании алмазным конусом. Число твердости, определенное методом Роквелла , обозначается символом HR. Однако в зависимости от формы индентора и значений нагрузок вдавливания к этому символу добавляется буква А, С, или В, обозначающая соответствующую шкалу измерений.

Числа твердости по Роквеллу определяют в условных единицах по формулам:

где 100 и 130 - предельно заданное число делений индикатора часового типа с ценой деления 0,002 мм.

Трещиностойкость - свойство материалов сопротивляться развитию трещин при механических и других воздействиях.

Трещины в материалах могут быть металлургического и технологического происхождения, а также возникать и развиваться в процессе эксплуатации. В случае возможности хрупкого разрушения для безопасной работы элементов конструкций необходимо количественно оценивать размеры допустимых трещиноподобных дефектов.

Количественной характеристикой трещиностойкости материала является критический коэффициент интенсивности напряжений в условиях плоской деформации в вершине трещины K I с.

Многие конструкции при эксплуатации испытывают ударные нагрузки. Для решения вопроса об их долговечности и надежности в этих условиях очень важными являются результаты динамических испытаний (нагрузка прилагается ударом с большой силой).

Переход от статических нагружений к динамическим вызывает изменение всех свойств металлов и сплавов, связанных с пластической деформацией.

Для оценки склонности материала к хрупкому разрушению применяют испытания на ударный изгиб образцов с надрезом, в результате которых определяют ударную вязкость.

Ударная вязкость - работа, затраченная при динамическом разрушении надрезанного образца, отнесенная к площади поперечного сечения в месте надреза.

Вязкость - свойство, обратное хрупкости. Ударная вязкость ответственных деталей должна быть высокой.

Кроме числовых значений, получаемых при испытании на удар, важным критерием является характер излома. Волокнистый матовый излом без характерного металлического блеска свидетельствует о вязком разрушении. Хрупкое разрушение дает кристаллический блестящий излом.

Ударная вязкость зависит от многих факторов. Наличие в изделиях резких переходов в сечении, надрезов, вырезов и т. п. вызывает неравномерное распределение напряжений по сечению и их концентрацию. Ударная вязкость зависит также и от состояния поверхности образца. Риски, царапины, следы механической обработки и другие дефекты снижают ударную вязкость.

Динамическое нагружение вызывает повышение предела упругости и предела текучести, не переводя материал в хрупкое состояние. Но при понижении температуры, сопротивление удару резко уменьшается. Это явление называется хладоломкостью .

К хладоломким металлам относятся металлы с объемноцентрированной кубической решеткой (например, a-Fe, Mo, Cr). Для этой группы металлов при определенной минусовой температуре наблюдается резкое снижение ударной вязкости. К нехладоломким металлам можно отнести металлы с гранецентрированной кубической решеткой (g-Fe, Al, Ni и др.). Хладоломкость у крупнозернистого материала наступает при более высокой температуре, чем у мелкозернистого.

Характер падения ударной вязкости напоминает порог, что привело к выражению «порог хладоломкости».

Температура, при которой происходит определенное падение ударной вязкости, называется критической температурой хрупкости T кр.

Большинство разрушений деталей и конструкций при эксплуатации происходит в результате циклического нагружения. Причем в ряде случаев разрушение происходит при напряжениях, лежащих ниже предела упругости.

Усталость - процесс постепенного накопления повреждений в материале при действии циклических нагрузок, приводящий к образованию трещин и разрушению.

Термин «усталость» часто заменяют термином «выносливость», который показывает сколько перемен нагрузок может выдержать металл или сплав без разрушения. Сопротивление усталости характеризуется пределом выносливости s -1 . Число циклов условно принято для сталей равным 10 7 , для цветных металлов - 10 -8 .

Явление усталости наблюдается при изгибе, кручении, растяжении-сжатии и при других способах нагружения.

Большое влияние на выносливость оказывают микроскопическая неоднородность, неметаллические включения, газовые пузыри, химические соединения, а также надрезы, риски, царапины, наличие обезуглероженного слоя и следов коррозии на поверхности изделий, которые приводят к неравномерному распределению напряжений и снижают сопротивление материала повторно-переменным нагрузкам.

Износостойкость - сопротивление металлов изнашиванию вследствие процессов трения. Износ заключается в отрыве с трущейся поверхности отдельных ее частиц и определяется по изменению геометрических размеров или массы детали.

Усталостная прочность и износостойкость дают наиболее полное представление о долговечности деталей в конструкциях, а ударная вязкость и трещиностойкость характеризует надежность этих деталей.

Жаропрочность - способность металлов и сплавов длительно сопротивляться началу и развитию пластической деформации и разрушению под действием постоянных нагрузок при высоких температурах. Предел кратковременной прочности, предел ползучести и предел длительной прочности - численные характеристики жаропрочности.

© 2024 minbanktelebank.ru
Бизнес. Заработок. Кредит. Криптовалюта