Кто придумал аэс. Как устроена атомная электростанция

Атомная электростанция или сокращенно АЭС это комплекс технических сооружений, предназначенных для выработки электрической энергии путём использования энергии, выделяемой при контролируемой ядерной реакции.

Во второй половине 40-х годов, перед тем, как были закончены работы по созданию первой атомной бомбы которая была испытана 29 августа 1949 года, советские ученые приступили к разработке первых проектов мирного использования атомной энергии. Основным направлением проектов была электроэнергетика.

В мае 1950 года в районе поселка Обнинское Калужской области, начато строительство первой в мире АЭС.

Впервые электроэнергию с помощью ядерного реактора получили 20 декабря 1951 года в штате Айдахо в США.

Для проверки работоспособности генератор был подключен к четырем лампам накаливания, ни то не ожидал, что лампы зажгутся.

С этого момента человечество стало использовать энергию ядерного реактора для получения электричества.

Первые Атомные электростанции

Строительство первой в мире атомная электростанция мощностью 5 МВт было закончено в 1954 году и 27 июня 1954 года она была запущена, так начала работать .


В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт.

Строительство Белоярской промышленной АЭС началось так же в 1958 году. 26 апреля 1964 генератор 1-й очереди дал ток потребителям.

В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969.

В 1973 г. запущена Ленинградская АЭС.

В других странах первая АЭС промышленного назначения была введена в эксплуатацию в 1956 в Колдер-Холле (Великобритания) ее мощность составляла 46 МВт.

В 1957 году вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Мировыми лидерами в производстве ядерной электроэнергии являются:

  1. США (788,6 млрд кВт ч/год),
  2. Франция(426,8 млрд кВт ч/год),
  3. Япония (273,8 млрд кВт ч/год),
  4. Германия (158,4 млрд кВт ч/год),
  5. Россия (154,7 млрдкВт ч/год).

Классификация АЭС

Атомные электростанции можно классифицировать по нескольким направлениям:

По типу реакторов

  • Реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятностипоглощения нейтрона ядрами атомов топлива
  • Реакторы на лёгкой воде
  • Реакторы на тяжёлой воде
  • Реакторы на быстрых нейтронах
  • Субкритические реакторы, использующие внешние источники нейтронов
  • Термоядерные реакторы

По виду отпускаемой энергии

  1. Атомные электростанции (АЭС), предназначенные для выработки только электроэнергии
  2. Атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию

На атомных станциях, расположенных на территории России имеются теплофикационные установки, они необходимы для подогрева сетевой воды.

Виды топлива используемого на Атомных электростанциях

На атомных электростанциях возможно использование несколько веществ, благодаря которым можно выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.

Ториевое топливо сегодня не применяется в атомных электростанциях, для этого есть ряд причин.

Во-первых , его сложнее преобразовать в тепловыделяющие элементы, сокращенно ТВЭлы.

ТВЭлы - это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри

ТВЭлов находятся радиоактивные вещества. Эти трубки являются хранилищами ядерного топлива.

Во-вторых , использование ториевого топлива предполагает его сложную и дорогую переработку уже после использования на АЭС.

Плутониевое топливо так же не применяют в атомной электроэнергетике, в виду того, что это вещество имеет очень сложный химический состав, система полноценного и безопасного применения еще не разработана.

Урановое топливо

Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. На сегодняшний день уран добывается несколькими способами:

  • открытым способом в карьерах
  • закрытым в шахтах
  • подземным выщелачиванием, при помощи бурения шахт.

Подземное выщелачивание, при помощи бурения шахт происходит путем размещения раствора серной кислоты в подземных скважинах, раствор насыщается ураном и выкачивается обратно.

Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде.

Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья.

В России из одной тонны руды получают чуть больше полутора килограмм урана. Места добычи урана нерадиоактивны.

В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.

Подготовка урана

В виде руды уран в АЭС не используют, руда не вступает в реакцию. Для использования урана на АЭС сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом.

Урановый порошок превращается в металлические «таблетки», - он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при температурах больше 1500 градусов по Цельсию.

Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.

В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.

Перед размещением урановых таблеток в реакторе они помещаются в металлические трубки из циркониевых сплавов - ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки.

Именно ТВС называются топливом АЭС.

Как происходит переработка топлива АЭС

Спустя год использования урана в ядерных реакторах необходимо производить его замену.

Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение.

В результате химической экстракции выделяются уран и плутоний, которые идут на повторное использование, из них делают свежее ядерное топливо.

Продукты распада урана и плутония направляются на изготовление источников ионизирующих излучений, их используют в медицине и промышленности.

Все, что остается после этих манипуляций, отправляется в печь для разогрева, из этой массы варится стекло, такое стекло находится в специальных хранилищах.

Из остатков изготавливают стекло не для массового применения, стекло используется для хранения радиоактивных веществ.

Из стекла сложно выделить остатки радиоактивных элементов, которые могут навредить окружающей среде. Недавно появился новый способ утилизации радиоактивных отходов.

Быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива.

По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.

Помимо этого, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного.

Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого не применялись.

Принцип работы АЭС

Принцип работы атомной электростанции на двухконтурном водо-водяном энергетическом реакторе (ВВЭР).

Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура.

На выходе из турбин, пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.


Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).

Помимо воды, в различных реакторах в качестве теплоносителя может применяться также расплавленный натрий или газ.

Использование натрия позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в натриевом контуре не превышает атмосферное), избавиться от компенсатора давления, но создаёт свои трудности, связанные с повышенной химической активностью этого металла.

Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор).

Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, а реакторы БН (реактор на Быстрых Нейтронах) - два натриевых и один водяной контуры.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.

Устройство ядерного реактора

В ядерном реакторе используется процесс деления ядер, при котором тяжелое ядро распадается на два более мелких фрагмента.

Эти осколки находятся в очень возбужденном состоянии и испускают нейтроны, другие субатомные частицы и фотоны.

Нейтроны могут вызвать новые деления, в результате которых их излучается еще больше, и так далее.

Такой непрерывный самоподдерживающийся ряд расщеплений называется цепной реакцией.

При этом выделяется большое количество энергии, производство которой является целью использования АЭС.

Принцип работы ядерного реактора и атомной электростанции таков, что коло 85% энергии расщепления высвобождается в течение очень короткого промежутка времени после начала реакции.

Остальная часть вырабатывается в результате радиоактивного распада продуктов деления, после того как они излучили нейтроны.

Радиоактивный распад является процессом, при котором атом достигает более стабильного состояния. Он продолжается и после завершения деления.

Основные элементы ядерного реактора

  • Ядерное топливо: обогащённый уран, изотопы урана и плутония. Чаще всего используется уран 235;
  • Теплоноситель для вывода энергии, которая образуется при работе реактора: вода, жидкий натрий и др.;
  • Регулирующие стержни;
  • Замедлитель нейтронов;
  • Оболочка для защиты от излучения.

Принцип действия ядерного реактора

В активной зоне реактора располагаются тепловыделяющие элементы (ТВЭЛ) – ядерное топливо.

Они собраны в кассеты, включающие в себя по несколько десятков ТВЭЛов. По каналам через каждую кассету протекает теплоноситель.

ТВЭЛы регулируют мощность реактора. Ядерная реакция возможна только при определённой (критической) массе топливного стержня.

Масса каждого стержня в отдельности ниже критической. Реакция начинается, когда все стержни находятся в активной зоне. Погружая и извлекая топливные стержни, реакцией можно управлять.

Итак, при превышении критической массы топливные радиоактивные элементы, выбрасывают нейтроны, которые сталкиваются с атомами.

В результате образуется нестабильный изотоп, который сразу же распадается, выделяя энергию, в виде гамма излучения и тепла.

Частицы, сталкиваясь, сообщают кинетическую энергию друг другу, и количество распадов в геометрической прогрессии увеличивается.

Это и есть цепная реакция - принцип работы ядерного реактора. Без управления она происходит молниеносно, что приводит к взрыву. Но в ядерном реакторе процесс находится под контролем.

Таким образом, в активной зоне выделяется тепловая энергия, которая передаётся воде, омывающей эту зону (первый контур).

Здесь температура воды 250-300 градусов. Далее вода отдаёт тепло второму контуру, после этого – на лопатки турбин, вырабатывающих энергию.

Преобразование ядерной энергии в электрическую можно представить схематично:

  • Внутренняя энергия уранового ядра
  • Кинетическая энергия осколков распавшихся ядер и освободившихся нейтронов
  • Внутренняя энергия воды и пара
  • Кинетическая энергия воды и пара
  • Кинетическая энергия роторов турбины и генератора
  • Электрическая энергия

Активная зона реактора состоит из сотен кассет, объединенных металлической оболочкой. Эта оболочка играет также роль отражателя нейтронов.

Среди кассет вставлены управляющие стержни для регулировки скорости реакции и стержни аварийной защиты реактора.

Атомная станция теплоснабжения

Первые проекты таких станций были разработаны ещё в 70-е годы XXвека, но из-за наступивших в конце 80-х годов экономических потрясений и жёсткого противодействия общественности, до конца ни один из них реализован не был.

Исключение составляют Билибинская АЭС небольшой мощности, она снабжает теплом и электричеством посёлок Билибино в Заполярье (10 тыс. жителей) и местные горнодобывающие предприятия, а также оборонные реакторы (они занимаются производством плутония):

  • Сибирская АЭС, поставляющая тепло в Северск и Томск.
  • Реактор АДЭ-2 на Красноярском горно-химического комбинате, с 1964 г.поставляющий тепловую и электрическую энергию для города Железногорска.

На момент кризиса было начато строительство нескольких АСТ на базе реакторов, аналогичных ВВЭР-1000:

  • Воронежская АСТ
  • Горьковская АСТ
  • Ивановская АСТ (только планировалась)

Строительство этих АСТ было остановлено во второй половине 1980-х или начале 1990-х годов.

В 2006 году концерн «Росэнергоатом» планировал построить плавучую АСТ для Архангельска, Певека и других заполярных городов на базе реакторной установки КЛТ-40, используемой на атомных ледоколах.

Имеется проект, строительства необслуживаемой АСТ на базе реактора «Елена», и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем»

Недостатки и преимущества АЭС

Любой инженерный проект имеет свои положительные и отрицательные стороны.

Положительные стороны атомных станций:

  • Отсутствие вредных выбросов;
  • Выбросы радиоактивных веществ в несколько раз меньше угольной эл. станции аналогичной мощности (золаугольных ТЭС содержит процент урана и тория, достаточный для их выгодного извлечения);
  • Небольшой объём используемого топлива и возможность его повторного использования после переработки;
  • Высокая мощность: 1000-1600 МВт на энергоблок;
  • Низкая себестоимость энергии, особенно тепловой.

Отрицательные стороны атомных станций:

  • Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;
  • Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;
  • Последствия возможного инцидента крайне тяжелые, хотя его вероятность достаточно низкая;
  • Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700-800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Научные разработки в сфере атомной энергетики

Конечно, имеются недостатки и опасения, но при этом атомная энергия представляется самой перспективной.

Альтернативные способы получения энергии, за счёт энергии приливов, ветра, Солнца, геотермальных источников и др. в настоящее время имеют не высокий уровнем получаемой энергии, и её низкой концентрацией.

Необходимые виды получения энергии, имеют индивидуальные риски для экологии и туризма, например производство фотоэлектрических элементов, которое загрязняет окружающую среду, опасность ветряных станций для птиц, изменение динамики волн.

Ученые разрабатывают международные проекты ядерных реакторов нового поколения, например ГТ-МГР, которые позволят повысить безопасность и увеличить КПД АЭС.

Россия начала строительство первой в мире плавающей АЭС, она позволяет решить проблему нехватки энергии в отдалённых прибрежных районах страны.

США и Япония ведут разработки мини-АЭС, с мощностью порядка 10-20 МВт для целей тепло и электроснабжения отдельных производств, жилых комплексов, а в перспективе - и индивидуальных домов.

Уменьшение мощности установки предполагает рост масштабов производства. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.

Производство водорода

Правительством США принята Атомная водородная инициатива. Совместно с Южной Кореей ведутся работы по созданию атомных реакторов нового поколения, способных производить в больших количествах водород.

INEEL (Idaho National Engineering Environmental Laboratory) прогнозирует, что один энергоблок атомной электростанции следующего поколения, будет производить ежедневно водород, эквивалентный 750000 литров бензина.

Финансируются исследования возможностей производства водорода на существующих атомных электростанциях.

Термоядерная энергетика

Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза.

Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.

В настоящее время при участии России, на юге Франции ведётся строительство международного экспериментального термоядерного реактора ITER.

Что такое КПД

Коэффициент полезного действия (КПД) - характеристика эффективности системы или устройства в отношении преобразования или передачи энергии.

Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой. КПД является безразмерной величиной и часто измеряется в процентах.

КПД атомной электростанции

Наиболее высокий КПД (92-95%) – достоинство гидроэлектростанций. На них генерируется 14% мировой электро мощности.

Однако, этот тип станций наиболее требователен к месту возведения и, как показала практика, весьма чувствителен к соблюдению правил эксплуатации.

Пример событий на Саяно-Шушенской ГЭС показал, к каким трагическим последствиям может привести пренебрежение правилами эксплуатации в стремлении снизить эксплуатационные издержки.

Высоким КПД (80%) обладают АЭС. Их доля в мировом производстве электроэнергии составляет 22%.

Но АЭС требуют повышенного внимания к проблеме безопасности, как на стадии проектирования, так и при строительстве, и во время эксплуатации.

Малейшие отступления от строгих регламентов обеспечения безопасности для АЭС, чревато фатальными последствиями для всего человечества.

Кроме непосредственной опасности в случае аварии, использование АЭС сопровождается проблемами безопасности, связанными с утилизацией или захоронением отработанного ядерного топлива.

КПД тепловых электростанций не превышает 34%, на них вырабатывается до шестидесяти процентов мировой электроэнергии.

Кроме электроэнергии на тепловых электростанциях производится тепловая энергия, которая в виде горячего пара или горячей воды может передаваться потребителям на расстояние в 20-25 километров. Такие станции называют ТЭЦ (Тепло Электро Централь).

ТЕС и ТЕЦ не дорогие в строительстве, но если не будут приняты специальные меры, они неблагоприятно воздействуют на окружающую среду.

Неблагоприятное воздействие на окружающую среду зависит от того, какое топливо применяется в тепловых агрегатах.

Наиболее вредны продукты сгорания угля и тяжёлых нефтепродуктов, природный газ менее агрессивен.

ТЭС являются основными источниками электроэнергии на территории России, США и большинства стран Европы.

Однако, есть исключения, например, в Норвегии электроэнергия вырабатывается в основном на ГЭС, а во Франции 70% электроэнергии генерируется на атомных станциях.

Первая электростанция в мире

Самая первая центральная электростанция, the Pearl Street, была сдана в эксплуатацию 4 сентября 1882 года в Нью-Йорке.

Станция была построена при поддержке Edison Illuminating Company, которую возглавлял Томас Эдисон.

На ней были установлены несколько генераторов Эдисона общей мощностью свыше 500 кВт.

Станция снабжала электроэнергией целый район Нью-Йорка площадью около 2,5 квадратных километров.

Станция сгорела дотла в 1890году, сохранилась только одна динамо-машина, которая сейчас находится в музее the Greenfield Village, Мичиган.

30 сентября 1882 года заработала первая гидроэлектростанция the Vulcan Street в штате Висконсин. Автором проекта был Г.Д. Роджерс, глава компании the Appleton Paper & Pulp.

На станции был установлен генератор с мощностью приблизительно 12.5 кВт. Электричества хватало на дом Роджерса и на две его бумажные фабрики.

Электростанция Gloucester Road. Брайтон был одним из первых городов в Великобритании с непрерывным электроснабжением.

В 1882 году Роберт Хаммонд основал компанию Hammond Electric Light , а 27 февраля 1882 года он открыл электростанцию Gloucester Road.

Станция состояла из динамо щетки, которая использовалась, чтобы привести в действие шестнадцать дуговых ламп.

В 1885 году электростанция Gloucester была куплена компанией Brighton Electric Light. Позже на этой территории была построена новая станция, состоящая из трех динамо щеток с 40 лампами.

Электростанция Зимнего дворца

В 1886 году в одном из внутренних дворов Нового Эрмитажа была построена электростанция.

Электростанция была крупнейшей во всей Европе, не только на момент постройки, но и на протяжении последующих 15 лет.


Ранее для освещения Зимнего дворца использовались свечи, с 1861 года начали использовать газовые светильники. Так как электролампы имели большее преимущество, были начаты разработки по внедрению электроосвещения.

Прежде чем здание было полностью переведено на электричество, освещении при помощи ламп использовали для освещения дворцовых зал во время рождественских и новогодних праздников 1885 года.

9 ноября 1885 года, проект строительства «фабрики электричества» был одобрен императором Александром III. Проект включал электрификацию Зимнего дворца, зданий Эрмитажа, дворовой и прилегающей территории в течение трех лет до 1888 года.

Была необходимость исключить возможность вибрации здания от работы паровых машин, размещение электростанции предусмотрели в отдельном павильоне из стекла и металла. Его разместили во втором дворе Эрмитажа, с тех пор называемом «Электрическим».

Как выглядела станция

Здание станции занимало площадь 630 м², состояло из машинного отделения с 6 котлами, 4 паровыми машинами и 2 локомобилями и помещения с 36 электрическими динамо-машинами. Общая мощность достигала 445 л.с.

Первыми осветили часть парадных помещений:

  • Аванзал
  • Петровский зал
  • Большой фельдмаршальский зал
  • Гербовый зал
  • Георгиевский зал
Было предложено три режима освещения:
  • полное (праздничное) включать пять раз в году (4888 ламп накаливания и 10 свечей Яблочкова);
  • рабочее – 230 ламп накаливания;
  • дежурное (ночное) – 304 лампы накаливания.
    Станция потребляла около 30 тыс. пудов (520 т) угля в год.

Крупные ТЭС, АЭС и ГЭС России

Крупнейшие электростанции России по федеральным округам:

Центральный:

  • Костромская ГРЭС, которая работает на мазуте;
  • Рязанская станция, основным топливом для которой является уголь;
  • Конаковская, которая может работать на газе и мазуте;

Уральский:

  • Сургутская 1 и Сургутская 2. Станции, которые являются одними из самых крупных электростанций РФ. Обе они работают на природном газе;
  • Рефтинская, функционирующая на угле и являющаяся одной из крупнейших электростанций на Урале;
  • Троицкая, также работающая на угле;
  • Ириклинская, главным источником топлива для которой является мазут;

Приволжский:

  • Заинская ГРЭС, работающая на мазуте;

Сибирский ФО:

  • Назаровская ГРЭС, потребляющая в качестве топлива мазут;

Южный:

  • Ставропольская, которая также может работать на совмещенном топливе в виде газа и мазута;

Северо-Западный:

  • Киришская на мазуте.

Список электростанций России, которые вырабатывают энергию при помощи воды, расположены на территории Ангаро-Енисейского каскада:

Енисей:

  • Саяно-Шушенская
  • Красноярская ГЭС;

Ангара:

  • Иркутская
  • Братская
  • Усть-Илимская.

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Белоярская АЭС

Расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 - первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции - 1760 МВт.

Курская АЭС

Одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции - 4000 МВт.

Ленинградская АЭС

Одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции - 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта ) - 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001-2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Атомные электростанции США

АЭС Шиппингпорт с номинальной мощностью 60 МВт, открыта в 1958 году в штате Пенсильвания. После 1965 года произошло интенсивное сооружение атомных электростанций по всей территории Штатов.

Основная часть атомных станций Америки была сооружена в дальнейшие после 1965 года 15 лет, до наступления первой серьезной аварии на АЭС на планете.

Если в качестве первой аварии вспоминается авария на Чернобыльской АЭС, то это не так.

Причиной аварии стали нарушения в системе охлаждения реактора и многочисленные ошибки обслуживающего персонала. В итоге расплавилось ядерное топливо. На устранение последствий аварии ушло около одного миллиарда долларов, процесс ликвидации занял 14 лет.


После авария правительство Соединенных Штатов Америки откорректировало условия безопасности функционирования всех АЭС в государстве.

Это соответственно привело к продолжению периода строительства и значительному подорожанию объектов «мирного атома». Такие изменения затормозили развитие общей индустрии в США.

В конце двадцатого века в Соединенных Штатах было104 работающих реактора. На сегодняшний день США занимают первое место на земле по численности ядерных реакторов.

С начала 21 столетия в Америке было остановлено четыре реактора в 2013 году, и начато строительство ещё четырех.

Фактически на сегодняшний момент в США функционирует 100 реакторов на 62 атомных электростанциях, которыми производится 20% от всей энергии в государстве.

Последний сооруженный реактор в США был введен в эксплуатацию в 1996 году на электростанции Уотс-Бар.

Власти США в 2001 году приняли новое руководство по энергетической политике. В нее внесен вектор развития атомной энергетики, посредствам разработки новых видов реакторов, с более подходящим коэффициентом экономности, новых вариантов переработки отслужившего ядерного топлива.

В планах до 2020 года было сооружение нескольких десятков новых атомных реакторов, совокупной мощностью 50 000 МВт. Кроме того, достичь поднятия мощности уже имеющихся АЭС приблизительно на 10 000 МВт.

США - лидер по количеству атомных станций в мире

Благодаря внедрению данной программы, в Америке в 2013 году было начато строительство четырех новых реакторов – два из которых на АЭС Вогтль, а два других на Ви-Си Саммер.

Эти четыре реактора новейшего образца – АР-1000, производства Westinghouse.

Чтобы понять принцип работы и устройство ядерного реактора, нужно совершить небольшой экскурс в прошлое. Атомный реактор – это многовековая воплощенная, пусть и не до конца, мечта человечества о неисчерпаемом источнике энергии. Его древний «прародитель» — костер из сухих веток, однажды озаривший и согревший своды пещеры, где находили спасение от холода наши далекие предки. Позже люди освоили углеводороды – уголь, сланцы, нефть и природный газ.

Наступила бурная, но недолгая эпоха пара, которую сменила еще более фантастическая эпоха электричества. Города наполнялись светом, а цеха – гулом невиданных доселе машин, приводимых в движение электродвигателями. Тогда казалось, что прогресс достиг своего апогея.

Все изменилось в конце XIX века, когда французский химик Антуан Анри Беккерель совершенно случайно обнаружил, что соли урана обладают радиоактивностью. Спустя 2 года, его соотечественники Пьер Кюри и его супруга Мария Склодовская-Кюри получили из них радий и полоний, причем уровень их радиоактивности в миллионы раз превосходил показатели тория и урана.

Эстафету подхватил Эрнест Резерфорд, детально изучивший природу радиоактивных лучей. Так начинался век атома, явивший на свет свое любимое дитя – атомный реактор.

Первый ядерный реактор

«Первенец» родом из США. В декабре 1942 года дал первый ток реактор, которому досталось имя его создателя — одного из величайших физиков столетия Э. Ферми. Три года спустя в Канаде обрела жизнь ядерная установка ZEEP. «Бронза» досталась первому советскому реактору Ф-1, запущенному в конце 1946 года. Руководителем отечественного ядерного проекта стал И. В. Курчатов. Сегодня в мире успешно трудятся более 400 ядерных энергоблоков.

Типы ядерных реакторов

Их основное назначение – поддерживать контролируемую ядерную реакцию, производящую электроэнергию. На некоторых реакторах производятся изотопы. Если кратко, то они представляют собой устройства, в недрах которых одни вещества превращаются в другие с выделением большого количества тепловой энергии. Это своеобразная «печь», где вместо традиционных видов топлива «сгорают» изотопы урана – U-235, U-238 и плутоний (Pu).

В отличии, к примеру, от автомобиля, рассчитанного на несколько видов бензина, каждому виду радиоактивного топлива соответствует свой тип реактора. Их два – на медленных (с U-235) и быстрых (c U-238 и Pu) нейтронах. На большинстве АЭС установлены реакторы на медленных нейтронах. Помимо АЭС, установки «трудятся» в исследовательских центрах, на атомных субмаринах и .

Как устроен реактор

У всех реакторов примерна одна схема. Его «сердце» — активная зона. Ее можно условно сравнить с топкой обычной печки. Только вместо дров там находится ядерное топливо в виде тепловыделяющих элементов с замедлителем – ТВЭЛов. Активная зона находится внутри своеобразной капсулы — отражателе нейтронов. ТВЭЛы «омываются» теплоносителем – водой. Поскольку в «сердце» очень высокий уровень радиоактивности, его окружает надежная радиационная защита.

Операторы контролируют работу установки с помощью двух важнейших систем – регулирования цепной реакции и дистанционной системы управления. Если возникает нештатная ситуация, мгновенно срабатывает аварийная защита.

Как работает реактор

Атомное «пламя» невидимо, так как процессы происходят на уровне деления ядер. В ходе цепной реакции тяжелые ядра распадаются на более мелкие фрагменты, которые, будучи в возбужденном состоянии, становятся источниками нейтронов и прочих субатомных частиц. Но на этом процесс не заканчивается. Нейтроны продолжают «дробиться», в результате чего высвобождается большая энергия, то есть, происходит то, ради чего и строятся АЭС.

Основная задача персонала – поддержание цепной реакции с помощью управляющих стержней на постоянном, регулируемом уровне. В этом его главное отличие от атомной бомбы, где процесс ядерного распада неуправляем и протекает стремительно, в виде мощнейшего взрыва.

Что произошло на Чернобыльской АЭС

Одна из основных причин катастрофы на Чернобыльской АЭС в апреле 1986 года – грубейшее нарушение эксплуатационных правил безопасности в процессе проведения регламентных работ на 4-м энергоблоке. Тогда из активной зоны было одновременно выведено 203 графитовых стержня вместо 15, разрешенных регламентом. В итоге, начавшаяся неуправляемая цепная реакция завершилась тепловым взрывом и полным разрушением энергоблока.

Реакторы нового поколения

За последнее десятилетие Россия стала одним из лидеров мировой ядерной энергетики. На данный момент госкорпорация «Росатом» ведет строительство АЭС в 12 странах, где возводятся 34 энергоблока. Столь высокий спрос – свидетельство высокого уровня современной российской ядерной техники. На очереди — реакторы нового 4-го поколения.

«Брест»

Один из них – «Брест», разработка которого ведется в рамках проекта «Прорыв». Ныне действующие системы разомкнутого цикла работают на низкообогащенном уране, после чего остается большое количество отработанного топлива, подлежащего захоронению, что требует огромных затрат. «Брест» — реактор на быстрых нейтронах уникален замкнутым циклом.

В нем отработанное топливо после соответствующей обработки в реакторе на быстрых нейтронах опять становится полноценным топливом, которое можно загружать обратно в ту же установку.

«Брест» отличает высокий уровень безопасности. Он никогда не «рванет» даже при самой серьезной аварии, очень экономичен и экологически безопасен, поскольку повторно пользуется своим «обновленным» ураном. Его также невозможно использовать для наработки оружейного плутония, что открывает широчайшие перспективы по его экспорту.

ВВЭР-1200

ВВЭР-1200 – инновационный реактор поколения «3+» мощностью 1150 МВт. Благодаря своим уникальным техническим возможностям, он обладает практически абсолютной эксплуатационной безопасностью. Реактор в изобилии оснащен системами пассивной безопасности, которые сработают даже в отсутствии электроснабжения в автоматическом режиме.

Одна из них – система пассивного отведения тепла, которая автоматически активируется при полном обесточивании реактора. На этот случай предусмотрены аварийные гидроемкости. При аномальном падении давления в первом контуре в реактор начинается подача большого количества воды, содержащей бор, которая гасит ядерную реакцию и поглощает нейтроны.

Еще одно ноу-хау находится в нижней части защитной оболочки – «ловушка» расплава. Если все же в результате аварии активная зона «потечет», «ловушка» не позволит разрушиться защитной оболочке и предотвратит попадание радиоактивных продуктов в грунт.


Атомная электростанция и ее устройство:

Атомная электростанция (АЭС) – это ядерная установка, назначением которой является выработка электрической энергии.

– машина для выполнения перегрузок топлива (перегрузочная машина).

Работа этого оборудования контролируется персоналом – операторами, использующими в этих целях блочный щит управления.

Ключевой элемент реактора – зона, располагающаяся в бетонной шахте. В нем также предусмотрена система, обеспечивающая управление и защитные функции; с ее помощью можно выбирать режим, в котором должна проходить управляемая цепная реакция деления. Система обеспечивает и аварийную защиту, что позволяет оперативно прекратить реакцию в случае возникновения внештатной ситуации.

Во втором здании АЭС находится турбинный зал, в котором располагаются турбина и парогенераторы. Кроме того, имеется корпус, в котором перегружается ядерное топливо и хранится отработанное ядерное топливо в специально предусмотренных бассейнах.

На территории атомной станции располагаются конденсаторы , а также градирни, охладительный пруд и брызгальный бассейн, представляющие собой компоненты оборотной системы охлаждения. Градирнями называются башни, выполненные из бетона и по форме напоминающие усеченный конус; в качестве пруда может служить естественный или искусственный водоем. АЭС оборудована высоковольтными линиями электропередач, простирающимися за границы ее территории.

Строительство первой в мире атомной электростанции было начато в 1950 году в России и завершено четыре года спустя. Для осуществления проекта была выбрана территория неподалеку от пос. Обнинского (Калужская область).

Однако впервые вырабатывать электроэнергию начали в Соединенных Штатах Америки в 1951 году; первый успешный случай ее получения был зафиксирован в штате Айдахо.

В сфере производства электроэнергии лидируют США, где ежегодно вырабатывается более 788 млрд кВт/ч. В список лидеров по объемам выработки также входят Франция, Япония, Германия и Россия.


Принцип работы атомной электростанции:

Выработка энергии происходит при помощи реактора , в котором происходит процесс деления ядер. При этом осуществляется распад тяжелого ядра на два осколка, которые, находясь в очень возбужденном состоянии, излучают нейтроны (и др. частицы). Нейтроны, в свою очередь, вызывают новые процессы деления, в результате которых излучается еще большее количество нейтронов. Этот непрерывный процесс распада носит название цепной ядерной реакции, характерной особенностью которой является выделение большого количества энергии. Производство этой энергии и является целью работы атомной электростанции (АЭС).

Производственный процесс включает в себя следующие этапы:

  1. 1. преобразование ядерной энергии в тепловую;
  2. 2. превращение тепловой энергии в механическую;
  3. 3. преобразование механической энергии в электрическую.

На первом этапе в реактор выполняется загрузка ядерного топлива (уран-235) для запуска контролируемой цепной реакции. Топливо высвобождает тепловые или медленные нейтроны, что приводит к выделению значительного количества тепла. Для отведения тепла из активной зоны реактора используется теплоноситель, который пропускается через весь объем активной зоны. Он может иметь жидкую или газообразную форму. Образующаяся тепловая энергия служит в дальнейшем для генерации пара в парогенераторе (теплообменнике).

На втором этапе осуществляется подача пара в турбогенератор. Здесь происходит преобразование тепловой энергии пара в механическую – энергию вращения турбины.

На третьем этапе, с помощью генератора происходит преобразование механической энергии вращения турбины в электрическую, которая далее направляется к потребителям.

Классификация атомных электростанций:

Атомные электростанции классифицируются по типу действующих в них реакторов. Выделяются два основных вида АЭС:

– с реакторами, применяющими в работе тепловые нейтроны (водо-водяной ядерный реактор, кипящий водо-водяной реактор, тяжеловодный ядерный реактор, графито-газовый ядерный реактор, графито-водный ядерный реактор и пр. реакторы на тепловых нейтронах);

– с реакторами, использующими быстрые нейтроны (реакторы на быстрых нейтронах).

В соответствии с видом вырабатываемой энергии различают два вида атомных электростанций :

АЭС для производства электроэнергии;

– АТЭЦ – атомные теплоэлектроцентрали, назначением которых является выработка не только электрической, но и тепловой энергии .

Одно-, двух- и трехконтурные реакторы атомной электростанции:

Реактор атомной станции бывает одно-, двух- или трехконтурным, что имеет отражается на схеме работы теплоносителя – она может иметь, соответственно, один, два или три контура. В нашей стране наиболее распространенными являются станции, оснащенные двухконтурными водо-водяными энергетическими реакторами (ВВЭР). По данным Росстата, на сегодняшний день в России работает 4 АЭС с 1-контурными реакторами, 5 – с 2-контурными и одна – с 3-контурным реактором.

Атомные электростанции с одноконтурным реактором:

Атомные электростанции этого типа – с одноконтурным реактором оснащены реакторами типа РБМК-1000. В блоке размещаются реактор, две конденсационные турбины и два генератора. Высокие рабочие температуры реактора позволяют ему одновременно выполнять функцию парогенератора, благодаря чему и становится возможным использовать одноконтурную схему. Преимуществом последней является сравнительно простой принцип работы, однако ввиду ее особенностей достаточно сложно обеспечить защиту от радиации . Это обусловлено тем, что при применении этой схемы воздействию радиоактивного излучения подвергаются все элементы блока.

Атомные электростанции с двухконтурным реактором:

Двухконтурная схема используется на АЭС с реакторами, относящимися к типу ВВЭР. Принцип работы этих станций следующий: в активную зону реактора под давлением осуществляется подача теплоносителя, в качестве которого выступает вода. Происходит ее нагрев, после чего она поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Радиация излучается только первым контуром, второй не имеет радиоактивных свойств. Устройство блока включает в себя генератор, а также одну или две конденсационных турбины (в первом случае мощность турбины составляет 1000 мегаватт, во втором - 2 х 500 мегаватт).

Передовой разработкой в сфере двухконтурных реакторов выступает модель ВВЭР-1200, предложенная концерном «Росэнергоатом». Она разработана на базе модификаций реактора ВВЭР-1000, которые изготавливались по заказам из-за рубежа в 90-х гг. и в первых годах текущего тысячелетия. В новой модели улучшены все параметры предшественника и предусмотрены дополнительные системы безопасности для снижения риска выхода радиоактивного излучения из герметичного отделения реактора. Новая разработка обладает рядом преимуществ - ее мощность выше на 20% по сравнению с предыдущей моделью, КИУМ достигает 90%, она способна работать в течение полутора лет без перегрузки топлива (обычные сроки составляют 1 год), ее эксплуатационный период равен 60 годам.

Атомные электростанции с трехконтурным реактором:

Трехконтурная схема используется на атомных электростанциях с реакторами типа БН («быстрый натриевый»). Работа таких реакторов основана на быстрых нейтронах, в качестве теплоносителя используется радиоактивный жидкий натрий. Для исключения его контакта с водой в конструкции реактора предусмотрен дополнительный контур, в котором используется натрий без радиоактивных свойств; это обеспечивает трехконтурный тип схемы.

Современный 3-контурный реактор БН-800, разработанный в 80-х – 90-х годах прошлого столетия, обеспечил России передовые позиции в области производства быстрых реакторов. Его ключевой особенностью является защищенность от воздействий, проистекающих изнутри или извне. В этой модели сведен к минимуму риск возникновения аварии, при которой расплавляется активная зона и в ходе переработки облученного ядерного топлива выделяется плутоний.

В рассматриваемом реакторе могут применяться различные виды топлива - обычные с окисью урана или МОКС-топливо на основе урана и

Как работает, например, гидроэлектростанция? Здесь все просто. Строится плотина, создается большой водоем, потоки воды под давлением вращают вал генератора, который вырабатывает электроэнергию. Как устроены ветряные электростанции? Тут все намного проще! Ветер крутит большие лопасти, которые вращают вал генератора, получается электричество. А какой принцип работы атомной электростанции? Оказывается, большинство людей вообще не понимают, как получают электроэнергию с помощью атомных реакторов. Для многих, это будто некая магия, что-то такое происходит в атомном реакторе, откуда получается электрический ток.

Считаю, что это несправедливо, люди должны знать, как работают атомные электростанции, потому что все намного проще и понятнее чем может показаться. О принципах работы атомной энергетики расскажу на примере Нововоронежской АЭС.


Итак, атомная станция со стороны выглядит как многие промышленные предприятия с техническими корпусами, кранами и трубами. Заметное отличие заключается в больших градирнях, из которых выходят большие клубы пара. Хотя градирни есть и на обычных теплоэлектростанциях, так что АЭС легко можно не опознать.

Переходим к самой известной по фильмам и фотографиям части АЭС — щиту управления.
Это блочный щит управления 4-м энергоблоком Нововоронежской атомной станции, запущенным в 1972 году. Здесь используется реактор ВВЭР-440 мощностью 400 МВт.

Нововоронежская АЭС — одна из первых атомных электростанций СССР и первая в мире атомная станция с водо-водяным энергетическим реактором. АЭС снабжает около 20 предприятий и более 2 миллионов жителей Центрально-Черноземного региона, а также на 85% обеспечивает Воронежскую область электричеством.

Всем известная «круглая штука с ромбиками» является разрезом активной зоны реактора. Красным показаны регулирующие стержни, белым — тепловыделяющие сборки. Если коротко и грубо, то атомный реактор представляет из себя большой вертикальный цилиндр, внутри которого располагаются стержни из ядерного топлива и контролирующие стержни.

Энергоблоки 3 и 4 были построены в начале 1970-х годов и должны были закончить работу еще в начале 2000-х годов, но позже срок их эксплуатации продлили. С прошлого года проводится активная модернизация.

Всего за историю Нововоронежской станции было 6 энергоблоков, первый из которых пущен в 1964 году, а шестой — в 2016 году. Седьмой энергоблок сейчас строится, а первый и второй уже выведены из работы.

Самая верхняя часть реактора, крышка напоминает большой колокол, а сами стержни находятся глубоко внизу. Это реакторное отделение 3-го и 4-го энергоблоков, а подобная смотровая площадка существует только на Нововоронежской АЭС. Да, именно так, можно сказать, выглядит снаружи атомный реактор.
Немного позади крышки располагается устройство для замены стержней, которое подъезжает сверху, когда крышку открывают, и производит работу внутри.

Блочный щит управления 5-м энергоблоком, построенным в 1980 году. Здесь используется реактор ВВЭР-1000 мощностью 1000 МВт.

Энергоблок должны были вывести из работы в 2010 году, но позже срок продлили.
С 1995 года Нововоронежская АЭС осуществляет модернизацию энергоблоков для приведения их в соответствие с современными стандартами безопасности.

Поскольку энергоблок и щит управления более новые, то и разрез активной зоны реактора тоже отображается уже не в аналоговом виде, а на мониторе компьютера в режиме реального времени. Можно наблюдать температуру и многие другие параметры.

Самая главная кнопка, которая полностью отключает реактор при возникновении самых страшных аварийных ситуаций. Пожелаем сотрудникам АЭС, чтобы подобных аварий никогда не происходило, а эта кнопка всегда оставалась запечатанной.

Во многих местах и помещениях станции находятся специальные устройства, измеряющие уровень радиации — счетчики Гейгера или дозиметры.

Пятый энергоблок Нововоронежской АЭС снаружи выглядит как цилиндр. Внутри необычного здания находится сам атомный реактор, окруженный специальной защитной цилиндрической оболочкой из железобетона. После ремонта и модернизации в 2011 году он снова введен в эксплуатацию, его мощность 1000 МВт.

А теперь главный вопрос: зачем вообще нужен реактор, как из всего этого получается электричество?
В реальности все оказывается не так «магически», как вероятно хотелось бы. Атомный реактор является фактически большим кипятильником, который нагревает воду.

После нагревания вода направляется к другому замкнутому контуру с водой, которая уже превращается в пар. Этот пар крутит большую турбину, приводящую в движение генератор, который вырабатывает электроэнергию.

В общем, все просто: реактор нагревает, вода/пар крутит генератор, получается электричество.
Машинный зал 5-го энергоблока.

Нагретую воду необходимо дальше куда-то направить и охладить, для этого придумали целые охладительные башни — градирни. Вода закачивается насосом наверх, а потом падает вниз, дробясь на мелкие капельки в оросителе. Снизу подается поток воздуха, который испаряет часть воды, а часть просто охлаждается и падает вниз.
Это градирни 3-го и 4-го энергоблоков высотой 95 метров.

Комплектное распределительное устройство предназначено для приема, распределения и передачи электричества. Грубо говоря, большой трансформатор. Внутри специальных труб находятся линии электропередач, все надежно и безопасно.
Это КРУЭ шестого энергоблока Нововоронежской АЭС.

Центральный щит управления 6-го энергоблока, который на данный момент является самым мощным атомной энергетике России — 1200 МВт. Построен по технологиям безопасности, ставшим актуальными после аварии на Фукусиме. Тип атомного реактора ВВЭР-1200.

Шестой энергоблок с улицы выглядит не так инфернально как цилиндр пятого, но по верхней части с трубами можно узнать. В августе 2016 года энергоблок был включен в сеть и выдал первые 240 МВт в энергосистему. На данный момент, это самый высокотехнологичный энергоблок в России, соответствующий самым современным требованиям надежности и безопасности.

Брызгальные бассейны 6-го блока, которые нужны для охлаждения систем потребления реактора. На заднем плане здание шестого энергоблока, градирни 6-го и строящегося 7-го энергоблока, и сама стройка.

Седьмой энергоблок будет близнецом шестого, завершение строительства намечено на 2018 год. Энергоблок будет устойчив к землетрясениям, ураганам, наводнениям, взрывам, даже падению самолета. Типа реактора ВВЭР-1200.

Турбинный зал 6-го энергоблока.

Срок службы основного оборудования блока теперь составляет 60 лет, а не 30 лет, как было на старых энергоблоках.

Градирни 6-го и 7-го энергоблоков намного больше и выше старых, их высота 171 метр.

Теперь вместо двух градирней на энергоблок используется одна, но большего размера. Это позволило уменьшить площадь самой атомной станции, сократить расходы материалов и средств.

Пункт управления 6-го энергоблока. В полную промышленную эксплуатацию энергоблок запланировано принять в конце 2016 года после проведения различных испытаний.

Большое спасибо лично

Принцип работы атомной электростанции и электростанций, сжигающих обычное топливо (уголь, газ, мазут, торф)одинаков: за счет выделяющегося тепла вода преобразуется в пар, который под давлением подается на турбину и вращает ее. Турбина, в свою очередь, передает вращение на генератор электрического тока, который преобразует механическую энергию вращения в электрическую энергию, то есть генерирует ток. В случае тепловых электростанций преобразование воды в пар происходит за счет энергии сгорания угля, газа и т. п., в случае АЭС - за счет энергии деления ядра урана-235.

Для преобразования энергии деления ядра в энергию водяного пара используются установки различных типов, которые получили название ядерных энергетических реакторов (установок). Уран обычно используется в виде диоксида - U0 2 .

Оксид урана в составе специальных конструкций помещают в замедлитель - вещество, при взаимодействии с которым нейтроны быстро теряют энергию (замедляются). Для этих целей используется вода или графит - соответственно этому реакторы называют водными или графитовыми.

Для переноса энергии (другим словом - тепла) от активной зоны к турбине используют теплоноситель - воду, жидкий металл (например, натрий) или газ (например, воздух или гелий). Теплоноситель омывает снаружи разогретые герметичные конструкции, внутри которых происходит реакция деления. В результате этого теплоноситель нагревается и, перемещаясь по специальным трубам, переносит энергию (в виде собственного тепла). Нагретый теплоноситель используется для создания пара, который под высоким давлением подается на турбину.

Рис.Ж.1. Принципиальная схема АЭС: 1 – ядерный реактор, 2 – циркуляционный насос, 3 – теплообменник, 4 – турбина, 5 – генератор электрического тока

В случае газового теплоносителя эта стадия отсутствует, и на турбину подается непосредственно нагретый газ.

В российской (в советской) атомной энергетике получили распространение два типа реакторов: так называемые Реактор Большой Мощности Канальный (РБМК) и Водо-Водяной Энергетический Реактор (ВВЭР). На примере РБКМ рассмотрим принцип работы АЭС чуть более подробно.

РБМК

РБМК является источником электроэнергии мощностью 1000 МВт, что отражает запись РБМК-1000. Реактор размещается в железобетонной шахте на специальной опорной конструкции. Вокруг него, сверху и снизу расположена биологическая защита (защита от ионизирующего излучения). Активную зону реактора заполняет графитовая кладка (то есть определенным образом сложенные блоки графита размером 25x25x50 см) цилиндрической формы. По всей высоте сделаны вертикальные отверстия (рис. Ж.2.). В них помещают металлические трубы, называемые каналами (отсюда название «канальный»). В каналы устанавливают либо конструкции с топливом (ТВЭЛ - тепловыделяющий элемент), либо стержни для управления реактором. Первые называются топливными каналами, вторые - каналами управления и защиты. Каждый канал является самостоятельной герметичной конструкцией.Управление реактором осуществляется погружением в канал стержней, поглощающих нейтроны (для этой цели используются такие материалы, как кадмий, бор, европий). Чем глубже такой стержень входит в активную зону, тем больше нейтронов поглощается, следовательно, число делящихся ядер уменьшается, энерговыделение падает. Совокупность соответствующих механизмов называется системой управления и защиты (СУЗ).


Рис.Ж.2. Схема РБМК.

К каждому топливному каналу снизу подводится вода, которая подается в реактор специальным мощным насосом, - он называется главный циркуляционный насос (ГЦН). Омывая ТВС, вода вскипает, и на выходе из канала образуется пароводяная смесь. Она поступает в барабан-сепаратор (БС) - аппарат, позволяющий отделить (сепарировать) сухой пар от воды. Отделенная вода направляется главным циркуляционным насосом обратно в реактор, замыкая тем самым контур «реактор - барабан-сепаратор - ГНЦ - реактор». Он называется контуром многократной принудительной циркуляции (КМПЦ). Таких контуров в РБМК два.

Количество оксида урана, необходимого для работы РБМК, составляет около 200 тонн (при их использовании выделяется такая же энергия, как при сжигании порядка 5 миллионов тонн угля). Топливо «работает» в реакторе 3-5 лет.

Теплоноситель находится в замкнутом контуре, изолированном от внешней среды, исключая сколь-либо значимое радиационное загрязнение. Это подтверждается исследованиями радиационной обстановки вокруг АЭС как самими службами станций, так и контролирующими органами, экологами, международными организациями

Охлаждающая вода поступает из водоема около станции. При этом забираемая вода имеет естественную температуру, а поступающая обратно в водоем - примерно на 10°С выше. Существуют строгие нормативы по температуре нагрева, которые дополнительно ужесточаются с учетом местных экосистем, но так называемое «тепловое загрязнение» водоема является, вероятно, самым значимым экологическим ущербом от атомных электростанций. Этот недостаток не является принципиальным и непреодолимым. Чтобы избежать его, наряду с водоемами-охладителями (или вместо них) используются градирни. Они представляют собой огромные сооружения в виде конических труб большого диаметра. Охлаждающая вода, после нагрева в конденсаторе, подается в многочисленные трубки, расположенные внутри градирни. Эти трубки имеют небольшие отверстия, через которые вода вытекает, образуя внутри градирни «гигантский душ». Падающая вода охлаждается за счет атмосферного воздуха и собирается под градирней в бассейне, откуда забирается для охлаждения конденсатора. Над градирней в результате испарения воды образуется белое облако.

Радиоактивные выбросы АЭС на 1-2 порядка ниже предельно допустимых (то есть приемлемо безопасных) значений, а концентрация радионуклидов в районах расположения АЭС в миллионы раз меньше ПДК и в десятки тысяч раз меньше природного уровня радиоактивности.

Радионуклиды, поступающие в ОС при работе АЭС, представляют собой в основном продукты деления. Основную часть из них составляют инертные радиоактивные газы (ИРГ), которые имеют малые периоды полураспада и потому не оказывают ощутимого воздействия на окружающую среду (они распадаются раньше, чем успевают воздействовать). Кроме продуктов деления некоторую часть выбросов составляют продукты активации (радионуклиды, образовавшиеся из стабильных атомов под действием нейтронов). Значимыми с точки зрения радиационного воздействия являются долгоживущие радионуклиды (ДЖН, основные дозообразующие радионуклиды - цезий-137, стронций-90, хром-51, марганец-54, кобальт-60) и радиоизотопы йода (в основном йод-131). При этом их доля в выбросах АЭС крайне незначительна и составляет тысячные доли процента.

По итогам 1999 года выбросы радионуклидов на АЭС по инертным радиоактивным газам не превышали 2,8% допустимых значений для уран-графитовых реакторов и 0,3% - для ВВЭР и БН. По долгоживущим радионуклидам выбросы не превышали 1,5% допустимых выбросов для уран-графитовых реакторов и 0,3% - для ВВЭР и БН, по йоду-131, соответственно, 1,6% и 0,4%.

Важным аргументом в пользу ядерной энергетики является компактность топлива. Округленные оценки таковы: из 1 кг дров можно произвести 1 кВт-ч электроэнергии, из 1 кг угля - 3 кВт-ч, из 1 кг нефти - 4 кВт-ч, из 1 кг ядерного топлива (низкообогащенного урана) -300 000 кВт-ч.

Атомный энергоблок мощностью 1 ГВт потребляет примерно 30 тонн низкообогащенного урана в год (то есть примерно один вагон в год). Для обеспечения года работы такой же по мощности угольной электростанции необходимо около 3 миллионов тонн угля (то есть около пяти железнодорожных составов в день ).

Выбросы долгоживущих радионуклидов угольной или мазутной электростанций в среднем в 20-50 (а по некоторым оценкам в 100) раз выше, чем АЭС такой же мощности.

Уголь идругие ископаемые виды топлива содержат калий-40, уран-238, торий-232, удельная активность каждого из которых составляет от нескольких единиц до нескольких сотен Бк/кг (и, соответственно, такие члены их радиоактивных рядов, как радий-226, радий-228, свинец-210, полоний-210, радон-222 и другие радионуклиды). Изолированные от биосферы в толще земной породы, при сжигании угля, нефти и газа они освобождаются и выбрасываются в атмосферу. Причем это в основном наиболее опасные с точки зрения внутреннего облучения альфа-активные нуклиды. И хоть природная радиоактивность угля, как правило, относительно невысока, количество сжигаемого топлива на единицу произведенной энергии колоссально.

В результате дозы облучения населения, проживающего вблизи угольной электростанции (при степени очистки дымовых выбросов на уровне 98-99%) больше , чем дозы облучения населения вблизи АЭС в 3-5 раз .

Кроме выбросов в атмосферу необходимо учитывать, что в местах концентрирования отходов угольных станций наблюдается значительное повышение радиационного фона, которое может приводить к дозам, превышающим, предельно допустимые. Часть естественной активности угля концентрируется в золе, которая на электростанциях накапливается в огромных количествах. При этом в пробах золы Канско-Ачинского месторождения отмечаются уровни более 400 Бк/кг. Радиоактивность летучей золы донбасского каменного угля превышает 1000 Бк/кг. И эти отходы никак не изолированы от окружающей среды. Производство ГВт-года электроэнергии за счет сжигания угля приводит к попаданию в окружающую среду сотен ГБк активности (в основном альфа).

Такие понятия, как «радиационное качество нефти и газа», стали привлекать серьезное внимание сравнительно недавно, тогда как содержание природных радионуклидов в них (радия, тория и других) могут достигать значительных величин. Например, объемная активность радона-222 в природном газе в среднем от 300 до 20 000 Бк/м 3 при максимальных значениях до 30 000-50 000. И таких кубометров Россия добывает в год почти 600 миллиардов.

Следует все же отметить, что радиоактивные выбросы как АЭС, так и ТЭС, не приводят к заметным последствиям для здоровья населения. Даже для угольных станций - это третьестепенный экологический фактор, который по значимости существенно ниже других: химических и аэрозольных выбросов, отходов и проч.

ПРИЛОЖЕНИЕ З

Популярные статьи

© 2024 minbanktelebank.ru
Бизнес. Заработок. Кредит. Криптовалюта